Tusach.vn xin giới thiệu lời giải chi tiết bài 6 trang 19 Chuyên đề học tập Toán 11 Chân trời sáng tạo. Bài viết này sẽ giúp học sinh hiểu rõ phương pháp giải và áp dụng vào các bài tập tương tự.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật nhanh nhất để hỗ trợ quá trình học tập của các bạn.
Hai thành phố A, B nằm ở hai bên bờ của một con sông (Hình 13).
Đề bài
Hai thành phố A, B nằm ở hai bên bờ của một con sông (Hình 13). Giả sử hai bờ sông là hai đường thẳng song song a, b. Tìm vị trí điểm M bên bờ a và N bên bờ b để xây dựng một chiếc cầu MN sao cho MN vuông góc với a, b và tổng khoảng cách AM + NB ngắn nhất.

Phương pháp giải - Xem chi tiết
Ta đi chứng minh tổng khoảng cách \(AM{\rm{ }} + {\rm{ }}NB\) ngắn nhất khi và chỉ khi \(A'N{\rm{ }} + {\rm{ }}NB'{\rm{ }} = {\rm{ }}A'B'.\) Với A’, B’ là ảnh của A, B qua \({Đ_d}\) (d là đường trung trực của đoạn MN)
Lời giải chi tiết

Gọi d là đường trung trực của đoạn MN.
Suy ra điểm N là ảnh của điểm M qua \({Đ_d}\)
Lấy điểm A’ là ảnh của điểm A qua \({Đ_d}\)
Suy ra đoạn A’N là ảnh của đoạn AM qua \({Đ_d}\)
Do đó \(A'N{\rm{ }} = {\rm{ }}AM.\)
Lấy điểm B’ là ảnh của điểm B qua
Suy ra b là đường trung trực của đoạn BB’.
Mà \(N \in b\) (giả thiết).
Do đó \(NB'{\rm{ }} = {\rm{ }}NB.\)
Ta có \(AM{\rm{ }} + {\rm{ }}NB{\rm{ }} = {\rm{ }}A'N{\rm{ }} + {\rm{ }}NB'.\)
Áp dụng bất đẳng thức tam giác cho ∆A’NB’, ta được: \(A'N{\rm{ }} + {\rm{ }}NB'{\rm{ }} \ge {\rm{ }}A'B'.\)
Do đó tổng khoảng cách \(AM{\rm{ }} + {\rm{ }}NB\) ngắn nhất khi và chỉ khi \(A'N{\rm{ }} + {\rm{ }}NB'{\rm{ }} = {\rm{ }}A'B'.\)
Tức là, ba điểm A’, N, B’ thẳng hàng.
Vậy N là giao điểm của A’B’ và bờ b, M là điểm nằm bên bờ a thỏa mãn M = Đd(N), với d là đường trung trực của đoạn MN, \(A'{\rm{ }} = {\rm{ }}{Đ_d}\left( A \right),{\rm{ }}B'{\rm{ }} = {\rm{ }}{Đ_b}\left( B \right).\)
Bài 6 trang 19 Chuyên đề học tập Toán 11 Chân trời sáng tạo thuộc chương trình học Toán 11, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm như đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Bài 6 thường bao gồm các dạng bài tập sau:
Bài 6: Cho hàm số y = x3 - 3x2 + 2. Tìm cực đại, cực tiểu của hàm số.
Giải:
Để giải các bài tập về đạo hàm một cách hiệu quả, bạn nên:
Tusach.vn luôn cập nhật lời giải chi tiết và chính xác nhất cho các bài tập Toán 11 Chân trời sáng tạo. Hãy truy cập website của chúng tôi để tìm hiểu thêm và nâng cao kiến thức của bạn!
| Chuyên đề | Bài | Trang |
|---|---|---|
| Đạo hàm | 6 | 19 |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập