1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 6 trang 19 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Giải bài 6 trang 19 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Giải bài 6 trang 19 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Tusach.vn xin giới thiệu lời giải chi tiết bài 6 trang 19 Chuyên đề học tập Toán 11 Chân trời sáng tạo. Bài viết này sẽ giúp học sinh hiểu rõ phương pháp giải và áp dụng vào các bài tập tương tự.

Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật nhanh nhất để hỗ trợ quá trình học tập của các bạn.

Hai thành phố A, B nằm ở hai bên bờ của một con sông (Hình 13).

Đề bài

Hai thành phố A, B nằm ở hai bên bờ của một con sông (Hình 13). Giả sử hai bờ sông là hai đường thẳng song song a, b. Tìm vị trí điểm M bên bờ a và N bên bờ b để xây dựng một chiếc cầu MN sao cho MN vuông góc với a, b và tổng khoảng cách AM + NB ngắn nhất.

Giải bài 6 trang 19 Chuyên đề học tập Toán 11 Chân trời sáng tạo 1

Phương pháp giải - Xem chi tiếtGiải bài 6 trang 19 Chuyên đề học tập Toán 11 Chân trời sáng tạo 2

Ta đi chứng minh tổng khoảng cách \(AM{\rm{ }} + {\rm{ }}NB\) ngắn nhất khi và chỉ khi \(A'N{\rm{ }} + {\rm{ }}NB'{\rm{ }} = {\rm{ }}A'B'.\) Với A’, B’ là ảnh của A, B qua \({Đ_d}\) (d là đường trung trực của đoạn MN)

Lời giải chi tiết

Giải bài 6 trang 19 Chuyên đề học tập Toán 11 Chân trời sáng tạo 3

Gọi d là đường trung trực của đoạn MN.

Suy ra điểm N là ảnh của điểm M qua \({Đ_d}\)

Lấy điểm A’ là ảnh của điểm A qua \({Đ_d}\)

Suy ra đoạn A’N là ảnh của đoạn AM qua \({Đ_d}\)

Do đó \(A'N{\rm{ }} = {\rm{ }}AM.\)

Lấy điểm B’ là ảnh của điểm B qua

Suy ra b là đường trung trực của đoạn BB’.

Mà \(N \in b\) (giả thiết).

Do đó \(NB'{\rm{ }} = {\rm{ }}NB.\)

Ta có \(AM{\rm{ }} + {\rm{ }}NB{\rm{ }} = {\rm{ }}A'N{\rm{ }} + {\rm{ }}NB'.\)

Áp dụng bất đẳng thức tam giác cho ∆A’NB’, ta được: \(A'N{\rm{ }} + {\rm{ }}NB'{\rm{ }} \ge {\rm{ }}A'B'.\)

Do đó tổng khoảng cách \(AM{\rm{ }} + {\rm{ }}NB\) ngắn nhất khi và chỉ khi \(A'N{\rm{ }} + {\rm{ }}NB'{\rm{ }} = {\rm{ }}A'B'.\)

Tức là, ba điểm A’, N, B’ thẳng hàng.

Vậy N là giao điểm của A’B’ và bờ b, M là điểm nằm bên bờ a thỏa mãn M = Đd(N), với d là đường trung trực của đoạn MN, \(A'{\rm{ }} = {\rm{ }}{Đ_d}\left( A \right),{\rm{ }}B'{\rm{ }} = {\rm{ }}{Đ_b}\left( B \right).\)

Giải bài 6 trang 19 Chuyên đề học tập Toán 11 Chân trời sáng tạo: Tổng quan và Phương pháp giải

Bài 6 trang 19 Chuyên đề học tập Toán 11 Chân trời sáng tạo thuộc chương trình học Toán 11, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm như đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung chi tiết bài 6 trang 19

Bài 6 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Tính đạo hàm của hàm số: Học sinh cần thành thạo các quy tắc tính đạo hàm của các hàm số cơ bản như hàm đa thức, hàm lượng giác, hàm mũ, hàm logarit.
  • Dạng 2: Tìm cực trị của hàm số: Sử dụng đạo hàm để tìm các điểm cực trị (cực đại, cực tiểu) của hàm số.
  • Dạng 3: Khảo sát sự biến thiên của hàm số: Xác định khoảng đồng biến, nghịch biến của hàm số dựa trên dấu của đạo hàm.
  • Dạng 4: Ứng dụng đạo hàm để giải quyết các bài toán thực tế: Ví dụ như bài toán tìm giá trị lớn nhất, giá trị nhỏ nhất của một đại lượng nào đó.

Lời giải chi tiết bài 6 trang 19 (Ví dụ)

Bài 6: Cho hàm số y = x3 - 3x2 + 2. Tìm cực đại, cực tiểu của hàm số.

Giải:

  1. Tính đạo hàm: y' = 3x2 - 6x
  2. Tìm điểm cực trị: Giải phương trình y' = 0, ta được x = 0 hoặc x = 2.
  3. Xác định loại cực trị:
    • Với x < 0, y' > 0, hàm số đồng biến.
    • Với 0 < x < 2, y' < 0, hàm số nghịch biến.
    • Với x > 2, y' > 0, hàm số đồng biến.
    Vậy hàm số đạt cực đại tại x = 0, giá trị cực đại là y = 2 và đạt cực tiểu tại x = 2, giá trị cực tiểu là y = -2.

Mẹo giải bài tập đạo hàm hiệu quả

Để giải các bài tập về đạo hàm một cách hiệu quả, bạn nên:

  • Nắm vững các quy tắc tính đạo hàm.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng các công cụ hỗ trợ như máy tính bỏ túi hoặc phần mềm giải toán để kiểm tra kết quả.
  • Đọc kỹ đề bài và xác định rõ yêu cầu của bài toán.

Tusach.vn – Đồng hành cùng bạn trên con đường học tập

Tusach.vn luôn cập nhật lời giải chi tiết và chính xác nhất cho các bài tập Toán 11 Chân trời sáng tạo. Hãy truy cập website của chúng tôi để tìm hiểu thêm và nâng cao kiến thức của bạn!

Chuyên đềBàiTrang
Đạo hàm619

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN