1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 3 trang 35 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Giải bài 3 trang 35 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Giải bài 3 trang 35 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Tusach.vn xin giới thiệu lời giải chi tiết bài 3 trang 35 Chuyên đề học tập Toán 11 Chân trời sáng tạo. Bài viết này cung cấp đáp án, phương pháp giải và giải thích chi tiết từng bước để giúp học sinh hiểu rõ kiến thức và tự tin làm bài tập.

Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 11 Chân trời sáng tạo, đảm bảo hỗ trợ tối đa cho quá trình học tập của bạn.

Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) có phương trình:

Đề bài

Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) có phương trình:

\(\left( C \right):{\rm{ }}{x^2}\; + {\rm{ }}{y^2}\; + {\rm{ }}4x{\rm{ }}-{\rm{ }}2y{\rm{ }}-{\rm{ }}4{\rm{ }} = {\rm{ }}0.\)

Viết phương trình ảnh của (C)

a) qua phép vị tự tâm O, tỉ số \(k{\rm{ }} = {\rm{ }}2;\)

b) qua phép vị tự tâm \(I\left( {1;{\rm{ }}1} \right),\) tỉ số \(k{\rm{ }} = {\rm{ }}-2.\)

Phương pháp giải - Xem chi tiếtGiải bài 3 trang 35 Chuyên đề học tập Toán 11 Chân trời sáng tạo 1

Nếu \({V_{(I,k)}}{\rm{[}}M(x,y){\rm{]}} = M'(x',y')\). Khi đó, \(\left\{ \begin{array}{l}x' - a = k(x - a)\\y' - b = k(y - b)\end{array} \right.\) với \(I(a;b)\)

Phép vị tự tỉ số k biến đoạn thẳng thành đoạn thẳng nhân lên với |k|, biến tam giác thành tam giác đồng dạng với tỉ số đồng dạng |k|, biến đường tròn bán kính r thành đường tròn bán kính \(r' = |k|.r\).

Lời giải chi tiết

Đường tròn \(\left( C \right):{\rm{ }}{x^2}\; + {\rm{ }}{y^2}\; + {\rm{ }}4x{\rm{ }}-{\rm{ }}2y{\rm{ }}-{\rm{ }}4{\rm{ }} = {\rm{ }}0\) có tâm A(–2; 1) và bán kính \(R = \sqrt {{{\left( { - 2} \right)}^2} + {1^2} - \left( { - 4} \right)} = 3\)

a) Gọi đường tròn (C’) là ảnh của đường tròn (C) qua \({V_{\left( {O,{\rm{ }}2} \right)}}\)

Khi đó (C’) có tâm ảnh của A qua \({V_{\left( {O,{\rm{ }}2} \right)}}\) và bán kính

Gọi \(A'\left( {x';{\rm{ }}y'} \right)\) là ảnh của A qua \({V_{\left( {O,{\rm{ }}2} \right)}}\).

Suy ra \(\overrightarrow {OA'} = 2\overrightarrow {OA} \) với \(\overrightarrow {OA} = \left( { - 2;1} \right)\) và \(\overrightarrow {OA'} = \left( {x';y'} \right)\)

Do đó \(\left\{ \begin{array}{l}x' = 2.( - 2) = - 4\\y' = 2.1 = 2\end{array} \right.\)

Vì vậy \(\;A'\left( {-4;{\rm{ }}2} \right).\)

Vậy phương trình đường tròn (C’) là: \(\;{\left( {x{\rm{ }} + {\rm{ }}4} \right)^2}\; + {\rm{ }}{\left( {y{\rm{ }}-{\rm{ }}2} \right)^2}\; = {\rm{ }}36.\)

b) Gọi đường tròn (C’’) là ảnh của đường tròn (C) qua \({V_{\left( {I,{\rm{ }}-2} \right)}}.\)

Khi đó \(\left( {C'''} \right)\) có tâm ảnh của A qua \({V_{\left( {I,{\rm{ }}-2} \right)}}\) và bán kính \(R'' = {\rm{ }}\left| {-2} \right|.R{\rm{ }} = {\rm{ }}2.3{\rm{ }} = {\rm{ }}6.\)

Gọi \(A''\left( {x'';{\rm{ }}y''} \right)\) là ảnh của A qua \({V_{\left( {I,{\rm{ }}-2} \right)}}.\)

Suy ra \(\overrightarrow {IA'} = - 2\overrightarrow {IA} \) với \(\overrightarrow {I{A'}} = \left( {{{x'}'} - 1;{{y'}'} - 1} \right)\) và \(\overrightarrow {IA} = \left( { - 3;0} \right)\)

Do đó \(\left\{ \begin{array}{l}x'' - 1 = \left( { - 2} \right).( - 3)\\y' - 1 = \left( { - 2} \right).0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x'' = 7\\y' = 1\end{array} \right.\)

Suy ra tọa độ \(A''\left( {7;{\rm{ }}1} \right).\)

Vậy phương trình đường tròn (C”) là: \({\left( {x{\rm{ }}-{\rm{ }}7} \right)^2}\; + {\rm{ }}{\left( {y{\rm{ }}-{\rm{ }}1} \right)^2}\; = {\rm{ }}36.\)

Giải bài 3 trang 35 Chuyên đề học tập Toán 11 Chân trời sáng tạo: Tổng quan và Phương pháp

Bài 3 trang 35 Chuyên đề học tập Toán 11 Chân trời sáng tạo thuộc chương trình học Toán 11, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm như đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung chi tiết bài 3 trang 35

Bài 3 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của các hàm số đơn thức, đa thức, và các hàm số phức tạp hơn.
  • Dạng 2: Tìm cực trị của hàm số: Sử dụng đạo hàm để tìm các điểm cực trị (cực đại, cực tiểu) của hàm số.
  • Dạng 3: Khảo sát sự biến thiên của hàm số: Xác định khoảng đồng biến, nghịch biến của hàm số dựa trên dấu của đạo hàm.
  • Dạng 4: Ứng dụng đạo hàm để giải quyết các bài toán thực tế: Ví dụ như bài toán tìm giá trị lớn nhất, giá trị nhỏ nhất của một đại lượng nào đó.

Lời giải chi tiết bài 3 trang 35 (Ví dụ)

Đề bài: (Giả sử đề bài cụ thể ở đây) Tìm đạo hàm của hàm số f(x) = x3 - 3x2 + 2x - 1.

Lời giải:

  1. Áp dụng quy tắc đạo hàm của tổng và hiệu: f'(x) = (x3)' - (3x2)' + (2x)' - (1)'
  2. Áp dụng quy tắc đạo hàm của lũy thừa: f'(x) = 3x2 - 6x + 2 - 0
  3. Vậy, f'(x) = 3x2 - 6x + 2

Mẹo giải bài tập đạo hàm hiệu quả

Để giải các bài tập về đạo hàm một cách hiệu quả, bạn nên:

  • Nắm vững các quy tắc tính đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng các công cụ hỗ trợ như máy tính bỏ túi hoặc phần mềm giải toán để kiểm tra kết quả.
  • Hiểu rõ bản chất của đạo hàm và ứng dụng của nó trong thực tế.

Tusach.vn – Đồng hành cùng bạn trong học tập

Tusach.vn cam kết cung cấp lời giải chi tiết, chính xác và dễ hiểu cho tất cả các bài tập Toán 11 Chân trời sáng tạo. Chúng tôi luôn nỗ lực để trở thành người bạn đồng hành đáng tin cậy của bạn trên con đường chinh phục tri thức. Hãy truy cập Tusach.vn để khám phá thêm nhiều tài liệu học tập hữu ích khác!

Bảng tổng hợp các công thức đạo hàm thường dùng

Hàm sốĐạo hàm
f(x) = c (hằng số)f'(x) = 0
f(x) = xnf'(x) = nxn-1
f(x) = sin(x)f'(x) = cos(x)
f(x) = cos(x)f'(x) = -sin(x)

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN