Tusach.vn xin giới thiệu lời giải chi tiết bài 2 thuộc chuyên đề học tập Toán 11 Chân trời sáng tạo. Bài viết này sẽ giúp các em học sinh nắm vững kiến thức, hiểu rõ phương pháp giải và tự tin làm bài tập.
Chúng tôi cung cấp đáp án chính xác, dễ hiểu, cùng với các bước giải chi tiết, giúp các em học sinh dễ dàng tiếp thu và áp dụng vào thực tế.
Đồ thị ở Hình 6 biểu diễn năm ngôi làng A, B, C, D và E cùng các con đường giữa chúng (mỗi cạnh biểu diễn một con đường giữa hai ngôi làng)
Có hay không một đồ thị có ba đỉnh, trong đó hai đỉnh có bậc bằng 2 và một đỉnh có bậc bằng 3?
Phương pháp giải:
Trong một đồ thị, tổng tất cả bậc của đỉnh là một số chẵn và bằng hai lần số cạnh của đồ thị
Lời giải chi tiết:
Không có, vì tổng tất cả các bậc của các đỉnh là 2 + 2 + 3 = 7 là một số lẻ.
Cho đồ thị như Hình 11.

a) Hãy chỉ ra bậc của tất cả các đỉnh và tìm tổng của chúng.
b) Tìm tất cả các đỉnh kề với đỉnh B. Số đỉnh này có bằng bậc của đỉnh B không?
Phương pháp giải:
Bậc của một đỉnh A trong đồ thị G là số cạnh của đồ thị nhận đỉnh A làm đầu mút, kí hiệu là d(A)
Lời giải chi tiết:
a) Số cạnh của đồ thị có A là đầu mút là: 4.Suy ra bậc của đỉnh A là: d(A) = 4.
Tương tự như vậy, ta có: d(B) = 4; d(C) = 5; d(D) = 4; d(E) = 2; d(F) = 1.
Tổng các bậc của các đỉnh của đồ thị là: 4 + 4 + 5 + 4 + 2 + 1 = 20.
b) Tất cả các đỉnh kề với đỉnh B là: A, C, D.Suy ra có 3 đỉnh kề với đỉnh B.
Mà bậc của đỉnh B là: d(B) = 4.
Vì 3 ≠ 4 nên 3 ≠ d(B).
Vậy số đỉnh kề với đỉnh B không bằng bậc của đỉnh B.
Đồ thị ở Hình 6 biểu diễn năm ngôi làng A, B, C, D và E cùng các con đường giữa chúng (mỗi cạnh biểu diễn một con đường giữa hai ngôi làng). Biết rằng mỗi con đường ra, vào làng đều phải đi qua một cổng chào; hai con đường khác nhau thì ra, vào làng qua hai cổng chào khác nhau. Ngoài ra, các ngôi làng không còn cổng chào nào khác.

a) Ngôi làng nào có ít cổng chào nhất? Ngôi làng nào có nhiều cổng chào nhất?
b) Năm ngôi làng có tất cả bao nhiêu cổng chào?
Phương pháp giải:
Quan sát hình 6 để trả lời
Lời giải chi tiết:
a) Do ta có 3 con đường để ra, vào ngôi làng A nên ngôi làng A có 3 cổng chào.
Tương tự như vậy, ta có:
⦁ Ngôi làng B có 5 cổng chào;
⦁ Ngôi làng C có 2 cổng chào;
⦁ Ngôi làng D có 3 cổng chào;
⦁ Ngôi làng E có 3 cổng chào.
Vậy ngôi làng có ít cổng chào nhất là ngôi làng C (với 2 cổng chào); ngôi làng có nhiều cổng chào nhất là ngôi làng B (với 5 cổng chào).
b) Quan sát Hình 6, đồ thị có tất cả 8 cạnh (mỗi cạnh biểu diễn 1 con đường giữa hai ngôi làng) nên năm ngôi làng có tất cả 8 cổng chào.
Đồ thị ở Hình 6 biểu diễn năm ngôi làng A, B, C, D và E cùng các con đường giữa chúng (mỗi cạnh biểu diễn một con đường giữa hai ngôi làng). Biết rằng mỗi con đường ra, vào làng đều phải đi qua một cổng chào; hai con đường khác nhau thì ra, vào làng qua hai cổng chào khác nhau. Ngoài ra, các ngôi làng không còn cổng chào nào khác.

a) Ngôi làng nào có ít cổng chào nhất? Ngôi làng nào có nhiều cổng chào nhất?
b) Năm ngôi làng có tất cả bao nhiêu cổng chào?
Phương pháp giải:
Quan sát hình 6 để trả lời
Lời giải chi tiết:
a) Do ta có 3 con đường để ra, vào ngôi làng A nên ngôi làng A có 3 cổng chào.
Tương tự như vậy, ta có:
⦁ Ngôi làng B có 5 cổng chào;
⦁ Ngôi làng C có 2 cổng chào;
⦁ Ngôi làng D có 3 cổng chào;
⦁ Ngôi làng E có 3 cổng chào.
Vậy ngôi làng có ít cổng chào nhất là ngôi làng C (với 2 cổng chào); ngôi làng có nhiều cổng chào nhất là ngôi làng B (với 5 cổng chào).
b) Quan sát Hình 6, đồ thị có tất cả 8 cạnh (mỗi cạnh biểu diễn 1 con đường giữa hai ngôi làng) nên năm ngôi làng có tất cả 8 cổng chào.
Cho đồ thị như Hình 11.

a) Hãy chỉ ra bậc của tất cả các đỉnh và tìm tổng của chúng.
b) Tìm tất cả các đỉnh kề với đỉnh B. Số đỉnh này có bằng bậc của đỉnh B không?
Phương pháp giải:
Bậc của một đỉnh A trong đồ thị G là số cạnh của đồ thị nhận đỉnh A làm đầu mút, kí hiệu là d(A)
Lời giải chi tiết:
a) Số cạnh của đồ thị có A là đầu mút là: 4.Suy ra bậc của đỉnh A là: d(A) = 4.
Tương tự như vậy, ta có: d(B) = 4; d(C) = 5; d(D) = 4; d(E) = 2; d(F) = 1.
Tổng các bậc của các đỉnh của đồ thị là: 4 + 4 + 5 + 4 + 2 + 1 = 20.
b) Tất cả các đỉnh kề với đỉnh B là: A, C, D.Suy ra có 3 đỉnh kề với đỉnh B.
Mà bậc của đỉnh B là: d(B) = 4.
Vì 3 ≠ 4 nên 3 ≠ d(B).
Vậy số đỉnh kề với đỉnh B không bằng bậc của đỉnh B.
Có hay không một đồ thị có ba đỉnh, trong đó hai đỉnh có bậc bằng 2 và một đỉnh có bậc bằng 3?
Phương pháp giải:
Trong một đồ thị, tổng tất cả bậc của đỉnh là một số chẵn và bằng hai lần số cạnh của đồ thị
Lời giải chi tiết:
Không có, vì tổng tất cả các bậc của các đỉnh là 2 + 2 + 3 = 7 là một số lẻ.
Chào mừng các em học sinh đến với lời giải chi tiết bài 2 trang 46, 47, 48 của Chuyên đề học tập Toán 11 Chân trời sáng tạo. Bài tập này thuộc chương trình học Toán 11, tập trung vào việc rèn luyện kỹ năng và kiến thức đã học. Tusach.vn sẽ đồng hành cùng các em để giải quyết bài tập một cách hiệu quả nhất.
Bài 2 trong chuyên đề này thường xoay quanh các chủ đề sau:
Để giải bài 2 trang 46, 47, 48, các em cần:
(Nội dung giải bài 2.1 trang 46 sẽ được trình bày chi tiết tại đây, bao gồm các bước giải, giải thích và kết luận.)
(Nội dung giải bài 2.2 trang 47 sẽ được trình bày chi tiết tại đây, bao gồm các bước giải, giải thích và kết luận.)
(Nội dung giải bài 2.3 trang 48 sẽ được trình bày chi tiết tại đây, bao gồm các bước giải, giải thích và kết luận.)
Trong quá trình giải bài tập, các em cần chú ý:
Tusach.vn luôn cập nhật lời giải các bài tập Toán 11 Chân trời sáng tạo một cách nhanh chóng và chính xác. Chúng tôi hy vọng rằng, với sự hỗ trợ của Tusach.vn, các em sẽ học tập tốt hơn và đạt được kết quả cao trong môn Toán.
| Công thức | Mô tả |
|---|---|
| (Công thức 1) | (Mô tả công thức 1) |
| (Công thức 2) | (Mô tả công thức 2) |
Chúc các em học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập