Tusach.vn xin giới thiệu lời giải chi tiết bài 1 trang 40 Chuyên đề học tập Toán 11 Chân trời sáng tạo. Bài viết này cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp học sinh hiểu sâu kiến thức và tự tin làm bài tập.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các bài giải Toán 11 Chân trời sáng tạo, đảm bảo hỗ trợ tối đa cho quá trình học tập của bạn.
Cho hình chữ nhật ABCD có AC cắt BD tại I. Gọi H, K, L và J lần lượt là trung điểm của AD, BC, KC và IC
Đề bài
Cho hình chữ nhật ABCD có AC cắt BD tại I. Gọi H, K, L và J lần lượt là trung điểm của AD, BC, KC và IC. Chứng minh hình thang JLKI và hình thang IHDC đồng dạng với nhau.
Phương pháp giải - Xem chi tiết
Dựa vào các phép biến hình đã học để làm
Lời giải chi tiết

Ta có J là trung điểm IC (giả thiết).
Suy ra \(\overrightarrow {CI} = 2\overrightarrow {CJ} \)
Do đó \({V_{\left( {C,{\rm{ }}2} \right)}}\left( J \right){\rm{ }} = {\rm{ }}I.\)
Chứng minh tương tự, ta được \({V_{\left( {C,{\rm{ }}2} \right)}}\left( L \right){\rm{ }} = {\rm{ }}K,{\rm{ }}{V_{\left( {C,{\rm{ }}2} \right)}}\left( K \right){\rm{ }} = {\rm{ }}B,{\rm{ }}{V_{\left( {C,{\rm{ }}2} \right)}}\left( I \right){\rm{ }} = {\rm{ }}A.\)
Vì vậy \({V_{\left( {C,{\rm{ }}2} \right)}}\;\) biến hình thang JLKI thành hình thang IKBA.
Hình chữ nhật ABCD có I là giao điểm của hai đường chéo, suy ra I là trung điểm BD.
Do đó \({Đ_I}\left( B \right){\rm{ }} = {\rm{ }}D.\)
Chứng minh tương tự, ta được \({Đ_I}\left( A \right){\rm{ }} = {\rm{ }}C,{\rm{ }}{Đ_I}\left( K \right){\rm{ }} = {\rm{ }}H.\)
Lại có \({Đ_I}\left( I \right){\rm{ }} = {\rm{ }}I.\)
Do đó ĐI biến hình thang IKBA thành hình thang IHDC.
Vì vậy phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm C, tỉ số 2 và phép đối xứng tâm I biến hình thang JLKI thành hình thang IHDC.
Vậy hình thang JLKI và hình thang IHDC đồng dạng với nhau.
Bài 1 trang 40 Chuyên đề học tập Toán 11 Chân trời sáng tạo thuộc chương trình học Toán 11, tập trung vào việc ôn tập và củng cố kiến thức về dãy số, cấp số cộng, cấp số nhân. Bài tập này thường yêu cầu học sinh vận dụng các công thức, tính chất của dãy số để giải quyết các bài toán thực tế.
Bài 1 thường bao gồm các dạng bài tập sau:
Đề bài: Cho dãy số (un) với u1 = 2 và un+1 = 2un + 1. Tính u5.
Lời giải:
Vậy u5 = 47.
Để giải các bài tập về dãy số một cách hiệu quả, bạn nên:
Tusach.vn là website cung cấp tài liệu học tập, giải bài tập trực tuyến uy tín và chất lượng. Chúng tôi luôn cố gắng mang đến cho học sinh những trải nghiệm học tập tốt nhất. Hãy truy cập Tusach.vn để khám phá thêm nhiều tài liệu hữu ích khác!
| Công thức | Mô tả |
|---|---|
| un = u1 + (n-1)d | Số hạng tổng quát của cấp số cộng |
| Sn = n/2 (u1 + un) | Tổng của n số hạng đầu tiên của cấp số cộng |
| un = u1qn-1 | Số hạng tổng quát của cấp số nhân |
| Sn = u1(1-qn)/(1-q) | Tổng của n số hạng đầu tiên của cấp số nhân (q ≠ 1) |
Hy vọng bài giải này sẽ giúp bạn hiểu rõ hơn về bài 1 trang 40 Chuyên đề học tập Toán 11 Chân trời sáng tạo. Chúc bạn học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập