1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 14 trang 42 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Giải bài 14 trang 42 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Giải bài 14 trang 42 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Bài 14 trang 42 Chuyên đề học tập Toán 11 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp các em nắm vững kiến thức và tự tin giải các bài tập tương tự.

Chúng tôi luôn cố gắng cung cấp nội dung chính xác và cập nhật nhất để hỗ trợ quá trình học tập của các bạn học sinh.

Trong mặt phẳng tọa độ Oxy, cho (Mleft( {3;{rm{ }}2} right),{rm{ }}Nleft( {2;{rm{ }}0} right).)

Đề bài

 Trong mặt phẳng tọa độ Oxy, cho \(M\left( {3;{\rm{ }}2} \right),{\rm{ }}N\left( {2;{\rm{ }}0} \right).\)

a) Tìm ảnh của các điểm M, N qua phép vị tự tâm I(–1; –1) tỉ số \(k{\rm{ }} = {\rm{ }}-2.\)

b) Tìm ảnh của các điểm M, N qua phép vị tự tâm O tỉ số \(k{\rm{ }} = {\rm{ }}3.\)

Phương pháp giải - Xem chi tiếtGiải bài 14 trang 42 Chuyên đề học tập Toán 11 Chân trời sáng tạo 1

Nếu \({V_{(I,k)}}{\rm{[}}M(x,y){\rm{]}} = M'(x',y')\). Khi đó, \(\left\{ \begin{array}{l}x' - a = k(x - a)\\y' - b = k(y - b)\end{array} \right.\) với \(I(a;b)\)

Lời giải chi tiết

a) ⦁ Ta đặt là ảnh của điểm M qua phép vị tự tâm \(I(-1;-1)\) tỉ số \(k{\rm{ }} = {\rm{ }}-2.\)

Suy ra \(\overrightarrow {I{M'}} = - 2\overrightarrow {IM} \) với \(\overrightarrow {I{M'}} = \left( {x' + 1;y' + 1} \right);\overrightarrow {IM} = \left( {4;3} \right)\)

Do đó \(\left\{ \begin{array}{l}x' + 1 = - 2.4\\y' + 1 = - 2.3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x' = - 9\\y' = - 7\end{array} \right.\)

Suy ra tọa độ M’(–9; –7).

⦁ Ta đặt N’(x’’; y’’) là ảnh của điểm N qua phép vị tự tâm I(–1; –1) tỉ số \(k{\rm{ }} = {\rm{ }}-2.\)

Suy ra \(\overrightarrow {I{N'}} = - 2\overrightarrow {IN} \) với \(\overrightarrow {I{N'}} = \left( {{{x'}'} + 1;{{y'}'} + 1} \right);\overrightarrow {IN} = \left( {3;1} \right)\)

Do đó \(\left\{ \begin{array}{l}x'' + 1 = - 2.3\\y'' + 1 = - 2.1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x'' = - 7\\y'' = - 3\end{array} \right.\)

Suy ra tọa độ N’(–7; –3).

Vậy ảnh của các điểm M, N qua phép vị tự tâm I(–1; –1) tỉ số k = –2 có tọa độ lần lượt là

b) ⦁ Ta đặt \(M''\left( {{x_{M''}};{y_{M''}}} \right)\) là ảnh của điểm M qua phép vị tự tâm O tỉ số k = 3.

Suy ra \(\overrightarrow {O{{M'}'}} = 3\overrightarrow {OM} \) với \(\overrightarrow {OM''} = \left( {{x_{M''}};{y_{M''}}} \right);\overrightarrow {OM} = \left( {3;2} \right)\)

Do đó \(\left\{ \begin{array}{l}{x_{M''}} = 3.3 = 9\\{y_{M''}} = 3.2 = 6\end{array} \right.\)

Suy ra tọa độ \(M''\left( {9;{\rm{ }}6} \right).\)

⦁ Ta đặt \(N''\left( {{x_{N''}};{y_{N''}}} \right)\) là ảnh của điểm N qua phép vị tự tâm O tỉ số k = 3.

Suy ra \(\overrightarrow {ON''} = 3\overrightarrow {ON} \)với \(\overrightarrow {ON''} = \left( {{x_{N''}};{y_{N''}}} \right);\overrightarrow {ON} = \left( {2;0} \right)\)

Do đó \(\left\{ \begin{array}{l}{x_{N''}} = 3.2 = 6\\{y_{N''}} = 3.0 = 0\end{array} \right.\)

Suy ra tọa độ N”(6; 0).

Vậy ảnh của các điểm M, N qua phép vị tự tâm O tỉ số k = 3 có tọa độ lần lượt là M”(9; 6), N”(6; 0).

Giải bài 14 trang 42 Chuyên đề học tập Toán 11 Chân trời sáng tạo: Tổng quan và Phương pháp giải

Bài 14 trang 42 Chuyên đề học tập Toán 11 Chân trời sáng tạo thuộc chương trình học Toán 11, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải:

  • Tính đạo hàm của hàm số.
  • Tìm cực trị của hàm số.
  • Khảo sát sự biến thiên của hàm số.
  • Giải các bài toán liên quan đến ứng dụng của đạo hàm (ví dụ: tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một khoảng).

Nội dung chi tiết bài 14 trang 42

Để giải quyết bài 14 trang 42 một cách hiệu quả, chúng ta cần nắm vững các kiến thức sau:

  1. Định nghĩa đạo hàm: Đạo hàm của hàm số f(x) tại điểm x0 được định nghĩa là giới hạn của tỷ số giữa độ biến thiên của hàm số và độ biến thiên của đối số khi độ biến thiên của đối số tiến tới 0.
  2. Các quy tắc tính đạo hàm: Quy tắc tính đạo hàm của tổng, hiệu, tích, thương, hàm hợp, và các hàm số cơ bản (hàm số mũ, hàm số logarit, hàm số lượng giác).
  3. Ứng dụng của đạo hàm: Sử dụng đạo hàm để tìm cực trị của hàm số, khảo sát sự biến thiên của hàm số, và giải các bài toán tối ưu.

Lời giải chi tiết bài 14 trang 42 (Ví dụ)

(Giả sử bài 14 yêu cầu khảo sát hàm số y = x3 - 3x2 + 2)

Bước 1: Tìm tập xác định của hàm số.

Hàm số y = x3 - 3x2 + 2 có tập xác định là D = ℝ.

Bước 2: Tính đạo hàm cấp nhất.

y' = 3x2 - 6x

Bước 3: Tìm điểm dừng.

Giải phương trình y' = 0, ta được:

3x2 - 6x = 0 ⇔ 3x(x - 2) = 0 ⇔ x = 0 hoặc x = 2

Vậy, hàm số có hai điểm dừng là x1 = 0 và x2 = 2.

Bước 4: Lập bảng biến thiên.

x-∞02+∞
y'+-+
y

Bước 5: Kết luận.

Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞), nghịch biến trên khoảng (0; 2). Hàm số đạt cực đại tại x = 0, giá trị cực đại là y = 2. Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là y = -2.

Mẹo giải bài tập đạo hàm hiệu quả

  • Nắm vững các công thức đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng máy tính cầm tay để kiểm tra lại kết quả.
  • Tham khảo các tài liệu tham khảo, sách giáo khoa, và các trang web học tập trực tuyến.

Tusach.vn – Đồng hành cùng bạn trên con đường chinh phục Toán học

Tusach.vn cam kết cung cấp lời giải chi tiết, chính xác và dễ hiểu cho tất cả các bài tập trong sách giáo khoa Toán 11 Chân trời sáng tạo. Hãy truy cập tusach.vn để khám phá thêm nhiều tài liệu học tập hữu ích và nâng cao kiến thức của bạn!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN