Bài 8 trang 36 Chuyên đề học tập Toán 11 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Tusach.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập này.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác và hữu ích nhất cho các em học sinh.
Trong Hình 14, tìm phép vị tự được dùng để biến bốn tam giác nhỏ thành bốn tam giác lớn.
Đề bài
Trong Hình 14, tìm phép vị tự được dùng để biến bốn tam giác nhỏ thành bốn tam giác lớn.

Phương pháp giải - Xem chi tiết
Cho điểm O cố định và một số thực k, \(k \ne 0\). Phép biến hình biến mỗi điểm M thành điểm M’ sao cho \(\overrightarrow {OM'} = k\overrightarrow {OM} \) được gọi là phép vị tự tâm O tỉ số k, kí hiệu \({V_{(O,k)}}\). O được gọi là tâm vị tự, k gọi là tỉ số vị tự.
Lời giải chi tiết

Giả sử ta chọn điểm O như hình vẽ.
Ta đặt bốn tam giác nhỏ là \(\Delta OAB,{\rm{ }}\Delta OBC,{\rm{ }}\Delta OCD\;\) và \(\Delta \)ODE và bốn tam giác lớn là OA’B’, \(\Delta \)OB’C’, \(\Delta \)OC’D’ và \(\Delta \)OD’E’ (hình vẽ).
Yêu cầu bài toán đưa về tìm phép vị tự biến \(\Delta OAB,{\rm{ }}\Delta OBC,{\rm{ }}\Delta OCD\;\) và \(\Delta \)ODE lần lượt thành \(\Delta \)OA’B’, \(\Delta \)OB’C’, \(\Delta \)OC’D’ và \(\Delta \)OD’E’.
Tức là ta đi tìm phép vị tự biến các điểm O, A, B, C, D, E lần lượt thành O, A’, B’, C’, D’, E’.
Ta thấy O là giao điểm của các đường thẳng AA’, BB’, CC’, DD’, EE’.
Ta chứng minh các điểm O, A’, B’, C’, D’, E’ lần lượt là ảnh của các điểm O, A, B, C, D, E qua \({V_{\left( {O,{\rm{ }}k} \right)}}.\)
Thật vậy, ta có \({V_{\left( {O,{\rm{ }}k} \right)}}\left( A \right){\rm{ }} = {\rm{ }}A'.\)
Suy ra \(\overrightarrow {O{A'}} = k\overrightarrow {OA} \) và \(OA'{\rm{ }} = {\rm{ }}\left| k \right|.OA.\)
Vì A, A’ nằm cùng phía đối với O nên \(k{\rm{ }} > {\rm{ }}0\).
Do đó \(k = \frac{{OA'}}{{OA}}\)
Mà \(k = \frac{{OA'}}{{OA}} = \frac{{OB'}}{{OB}}\) nên \(\overrightarrow {OB'} = k\overrightarrow {OB} \) do đó \({V_{\left( {O,{\rm{ }}k} \right)}}\left( B \right){\rm{ }} = {\rm{ }}B'.\)
Tương tự như trên ta chứng minh được \({V_{\left( {O,{\rm{ }}k} \right)}}\left( C \right){\rm{ }} = {\rm{ }}C',{\rm{ }}{V_{\left( {O,{\rm{ }}k} \right)}}\left( D \right){\rm{ }} = {\rm{ }}D',{\rm{ }}{V_{\left( {O,{\rm{ }}k} \right)}}\left( E \right){\rm{ }} = {\rm{ }}E'.\)
Vậy \({V_{\left( {O,\frac{{OA'}}{{OA}}} \right)}}\) là phép vị tự cần tìm.
Bài 8 trang 36 Chuyên đề học tập Toán 11 Chân trời sáng tạo thuộc chương trình học Toán 11, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải:
Để giải bài 8 trang 36 Chuyên đề học tập Toán 11 Chân trời sáng tạo, chúng ta cần thực hiện các bước sau:
Giả sử bài 8 yêu cầu khảo sát hàm số y = x3 - 3x2 + 2.
Bước 1: Tính đạo hàm: y' = 3x2 - 6x
Bước 2: Tìm điểm cực trị: Giải phương trình 3x2 - 6x = 0, ta được x = 0 và x = 2.
Bước 3: Xét dấu đạo hàm:
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| y' | + | - | + | |
| y | Đồng biến | Nghịch biến | Đồng biến |
Vậy hàm số đạt cực đại tại x = 0 và cực tiểu tại x = 2.
Để giải nhanh và hiệu quả các bài tập về đạo hàm và ứng dụng của đạo hàm, bạn nên:
Tusach.vn luôn cập nhật lời giải chi tiết và chính xác cho các bài tập trong sách giáo khoa và các chuyên đề học tập Toán 11. Chúng tôi hy vọng rằng với những hướng dẫn này, các em học sinh sẽ tự tin hơn trong việc giải quyết các bài toán về đạo hàm và ứng dụng của đạo hàm. Chúc các em học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập