1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 8 trang 36 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Giải bài 8 trang 36 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Giải bài 8 trang 36 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Bài 8 trang 36 Chuyên đề học tập Toán 11 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Tusach.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập này.

Chúng tôi luôn cố gắng cung cấp nội dung chính xác và hữu ích nhất cho các em học sinh.

Trong Hình 14, tìm phép vị tự được dùng để biến bốn tam giác nhỏ thành bốn tam giác lớn.

Đề bài

Trong Hình 14, tìm phép vị tự được dùng để biến bốn tam giác nhỏ thành bốn tam giác lớn.

Giải bài 8 trang 36 Chuyên đề học tập Toán 11 Chân trời sáng tạo 1

Phương pháp giải - Xem chi tiếtGiải bài 8 trang 36 Chuyên đề học tập Toán 11 Chân trời sáng tạo 2

Cho điểm O cố định và một số thực k, \(k \ne 0\). Phép biến hình biến mỗi điểm M thành điểm M’ sao cho \(\overrightarrow {OM'} = k\overrightarrow {OM} \) được gọi là phép vị tự tâm O tỉ số k, kí hiệu \({V_{(O,k)}}\). O được gọi là tâm vị tự, k gọi là tỉ số vị tự.

Lời giải chi tiết

Giải bài 8 trang 36 Chuyên đề học tập Toán 11 Chân trời sáng tạo 3

Giả sử ta chọn điểm O như hình vẽ.

Ta đặt bốn tam giác nhỏ là \(\Delta OAB,{\rm{ }}\Delta OBC,{\rm{ }}\Delta OCD\;\) và \(\Delta \)ODE và bốn tam giác lớn là OA’B’, \(\Delta \)OB’C’, \(\Delta \)OC’D’ và \(\Delta \)OD’E’ (hình vẽ).

Yêu cầu bài toán đưa về tìm phép vị tự biến \(\Delta OAB,{\rm{ }}\Delta OBC,{\rm{ }}\Delta OCD\;\) và \(\Delta \)ODE lần lượt thành \(\Delta \)OA’B’, \(\Delta \)OB’C’, \(\Delta \)OC’D’ và \(\Delta \)OD’E’.

Tức là ta đi tìm phép vị tự biến các điểm O, A, B, C, D, E lần lượt thành O, A’, B’, C’, D’, E’.

Ta thấy O là giao điểm của các đường thẳng AA’, BB’, CC’, DD’, EE’.

Ta chứng minh các điểm O, A’, B’, C’, D’, E’ lần lượt là ảnh của các điểm O, A, B, C, D, E qua \({V_{\left( {O,{\rm{ }}k} \right)}}.\)

Thật vậy, ta có \({V_{\left( {O,{\rm{ }}k} \right)}}\left( A \right){\rm{ }} = {\rm{ }}A'.\)

Suy ra \(\overrightarrow {O{A'}} = k\overrightarrow {OA} \) và \(OA'{\rm{ }} = {\rm{ }}\left| k \right|.OA.\)

Vì A, A’ nằm cùng phía đối với O nên \(k{\rm{ }} > {\rm{ }}0\).

Do đó \(k = \frac{{OA'}}{{OA}}\)

Mà \(k = \frac{{OA'}}{{OA}} = \frac{{OB'}}{{OB}}\) nên \(\overrightarrow {OB'} = k\overrightarrow {OB} \) do đó \({V_{\left( {O,{\rm{ }}k} \right)}}\left( B \right){\rm{ }} = {\rm{ }}B'.\)

Tương tự như trên ta chứng minh được \({V_{\left( {O,{\rm{ }}k} \right)}}\left( C \right){\rm{ }} = {\rm{ }}C',{\rm{ }}{V_{\left( {O,{\rm{ }}k} \right)}}\left( D \right){\rm{ }} = {\rm{ }}D',{\rm{ }}{V_{\left( {O,{\rm{ }}k} \right)}}\left( E \right){\rm{ }} = {\rm{ }}E'.\)

Vậy \({V_{\left( {O,\frac{{OA'}}{{OA}}} \right)}}\) là phép vị tự cần tìm.

Giải bài 8 trang 36 Chuyên đề học tập Toán 11 Chân trời sáng tạo: Tổng quan và Phương pháp

Bài 8 trang 36 Chuyên đề học tập Toán 11 Chân trời sáng tạo thuộc chương trình học Toán 11, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải:

  • Tính đạo hàm của hàm số.
  • Tìm cực trị của hàm số.
  • Khảo sát sự biến thiên của hàm số.
  • Giải các bài toán liên quan đến ứng dụng của đạo hàm (ví dụ: tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một khoảng).

Lời giải chi tiết bài 8 trang 36

Để giải bài 8 trang 36 Chuyên đề học tập Toán 11 Chân trời sáng tạo, chúng ta cần thực hiện các bước sau:

  1. Xác định hàm số: Đọc kỹ đề bài để xác định chính xác hàm số cần khảo sát.
  2. Tính đạo hàm: Sử dụng các quy tắc tính đạo hàm đã học để tính đạo hàm cấp một (y') của hàm số.
  3. Tìm điểm cực trị: Giải phương trình y' = 0 để tìm các điểm nghi ngờ là điểm cực trị. Sau đó, xét dấu đạo hàm cấp hai (y'') hoặc sử dụng phương pháp xét dấu đạo hàm cấp một để xác định loại điểm cực trị (cực đại, cực tiểu).
  4. Khảo sát sự biến thiên: Dựa vào dấu của đạo hàm cấp một, xác định các khoảng đồng biến, nghịch biến của hàm số.
  5. Vẽ đồ thị: Sử dụng các thông tin đã tìm được (cực trị, khoảng đồng biến, nghịch biến, giới hạn tại vô cùng) để vẽ đồ thị hàm số.

Ví dụ minh họa

Giả sử bài 8 yêu cầu khảo sát hàm số y = x3 - 3x2 + 2.

Bước 1: Tính đạo hàm: y' = 3x2 - 6x

Bước 2: Tìm điểm cực trị: Giải phương trình 3x2 - 6x = 0, ta được x = 0 và x = 2.

Bước 3: Xét dấu đạo hàm:

x-∞02+∞
y'+-+
yĐồng biếnNghịch biếnĐồng biến

Vậy hàm số đạt cực đại tại x = 0 và cực tiểu tại x = 2.

Mẹo giải nhanh và hiệu quả

Để giải nhanh và hiệu quả các bài tập về đạo hàm và ứng dụng của đạo hàm, bạn nên:

  • Nắm vững các quy tắc tính đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng máy tính cầm tay để kiểm tra lại kết quả.
  • Tham khảo các tài liệu tham khảo, sách giáo khoa, và các trang web học tập uy tín.

Tusach.vn – Đồng hành cùng bạn trên con đường học tập

Tusach.vn luôn cập nhật lời giải chi tiết và chính xác cho các bài tập trong sách giáo khoa và các chuyên đề học tập Toán 11. Chúng tôi hy vọng rằng với những hướng dẫn này, các em học sinh sẽ tự tin hơn trong việc giải quyết các bài toán về đạo hàm và ứng dụng của đạo hàm. Chúc các em học tập tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN