Bài viết này cung cấp lời giải chi tiết và dễ hiểu cho bài tập 1 trang 24 trong Chuyên đề học tập Toán 11 Chân trời sáng tạo. Chúng tôi sẽ phân tích từng bước giải, giúp bạn nắm vững kiến thức và kỹ năng cần thiết.
Tusach.vn luôn đồng hành cùng bạn trên con đường chinh phục môn Toán.
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) có phương trình:
Đề bài
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) có phương trình:
\(\left( C \right):{\rm{ }}{x^2}\; + {\rm{ }}{y^2}\;-{\rm{ }}4x{\rm{ }}-{\rm{ }}5{\rm{ }} = {\rm{ }}0\). Viết phương trình ảnh của (C) qua phép đối xứng tâm O.
Phương pháp giải - Xem chi tiết
Tìm ảnh của tâm I qua phép đối xứng. Áp dụng:
Nếu \(M'{\rm{ }} = {\rm{ }}{Đ_I}\left( M \right)\) thì \(\left\{ \begin{array}{l}{x_{M'}} + {x_M} = 2{x_I}\\{y_{M'}} + {y_M} = 2{y_I}\end{array} \right.\) (I là trung điểm của MM’)
Lời giải chi tiết
Đường tròn \(\left( C \right):{\rm{ }}{x^2}\; + {\rm{ }}{y^2}\;-{\rm{ }}4x{\rm{ }}-{\rm{ }}5{\rm{ }} = {\rm{ }}0\) có tâm I(2; 0), bán kính \(R = \sqrt {{2^2} + {0^2} - \left( { - 5} \right)} = 3\)
Gọi đường tròn (C’) là ảnh của đường tròn (C) qua phép đối xứng tâm O.
Suy ra đường tròn (C’) có tâm là ảnh của I(2; 0) và bán kính \(R'{\rm{ }} = {\rm{ }}R{\rm{ }} = {\rm{ }}3.\)
Gọi \(I' = {\rm{ }}{Đ_O}\left( I \right),\) suy ra O là trung điểm II’ với I(2; 0).
Do đó \(\left\{ \begin{array}{l}{x_{I'}} = 2{x_O} - {x_I} = 2.0 - 2 = - 2\\{y_{I'}} = 2{y_O} - {y_I} = 2.0 - 0 = 0\end{array} \right.\)
Vì vậy tọa độ \(I'\left( {-2;{\rm{ }}0} \right).\)
Vậy đường tròn (C’) có tâm I’(–2; 0) và bán kính R’ = 3 có phương trình là:
\({\left( {x{\rm{ }} + {\rm{ }}2} \right)^2}\; + {\rm{ }}{y^2}\; = {\rm{ }}9.\)
Bài 1 trang 24 Chuyên đề học tập Toán 11 Chân trời sáng tạo thường tập trung vào việc vận dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế, đặc biệt là các bài toán liên quan đến tối ưu hóa. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản về đạo hàm, bao gồm đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị của hàm số.
Để cung cấp lời giải chi tiết, chúng ta cần biết nội dung cụ thể của bài 1 trang 24. Tuy nhiên, dựa trên kinh nghiệm giải các bài tập tương tự, chúng ta có thể đưa ra một số bước giải chung:
Giả sử bài toán yêu cầu tìm giá trị lớn nhất của hàm số f(x) = -x2 + 4x + 5 trên đoạn [0; 3].
Giải:
Tusach.vn là một website cung cấp đầy đủ các tài liệu học tập Toán 11, bao gồm sách giáo khoa, sách bài tập, đề thi, và lời giải chi tiết. Chúng tôi cam kết cung cấp cho bạn những tài liệu chất lượng và hữu ích nhất để giúp bạn học tập tốt môn Toán.
Hãy truy cập Tusach.vn ngay hôm nay để khám phá thêm nhiều tài liệu học tập hữu ích khác!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập