Tusach.vn xin giới thiệu lời giải chi tiết bài 5 trang 10 Chuyên đề học tập Toán 11 Chân trời sáng tạo. Bài viết này cung cấp đáp án, phương pháp giải và giải thích rõ ràng từng bước để giúp học sinh hiểu bài và làm bài tập hiệu quả.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác và dễ hiểu nhất, hỗ trợ tối đa cho quá trình học tập của bạn.
Trong mặt phẳng tọa độ Oxy, xét phép biến hình h biến mỗi điểm M(x; y) thành điểm M’(x; y), trong đó
Đề bài
Trong mặt phẳng tọa độ Oxy, xét phép biến hình h biến mỗi điểm M(x; y) thành điểm M’(x; y), trong đó
\(\left\{ \begin{array}{l}x' = \frac{{\sqrt 2 }}{2}x - \frac{{\sqrt 2 }}{2}y\\y' = \frac{{\sqrt 2 }}{2}x + \frac{{\sqrt 2 }}{2}y\end{array} \right.\)
Hãy chứng minh h là một phép dời hình.
Phương pháp giải - Xem chi tiết
Phép dời hình là phép biến hình bảo toàn khoảng cách (không làm thay đổi khoảng cách) giữa 2 điểm bất kì.
Lời giải chi tiết
Lấy hai điểm bất kì \(M({x_1};{y_1})\), \(N({x_2};{y_2})\).
Suy ra \(MN = \sqrt {{{\left( {{{\rm{x}}_2} - {{\rm{x}}_1}} \right)}^2} + {{\left( {{{\rm{y}}_2} - {{\rm{y}}_1}} \right)}^2}} \).
Ta có ảnh của M, N qua phép biến hình h là \({\rm{M'}}\left( {\frac{{\sqrt 2 }}{2}{{\rm{x}}_1} - \frac{{\sqrt 2 }}{2}{{\rm{y}}_1};\frac{{\sqrt 2 }}{2}{{\rm{x}}_1} + \frac{{\sqrt 2 }}{2}{{\rm{y}}_1}} \right)\), \({\rm{N'}}\left( {\frac{{\sqrt 2 }}{2}{{\rm{x}}_2} - \frac{{\sqrt 2 }}{2}{{\rm{y}}_2};\frac{{\sqrt 2 }}{2}{{\rm{x}}_2} + \frac{{\sqrt 2 }}{2}{{\rm{y}}_2}} \right)\).
Khi đó
\({\rm{M'N'}} = \sqrt {{{\left( {\frac{{\sqrt 2 }}{2}{{\rm{x}}_2} - \frac{{\sqrt 2 }}{2}{{\rm{y}}_2} - \frac{{\sqrt 2 }}{2}{{\rm{x}}_1} + \frac{{\sqrt 2 }}{2}{{\rm{y}}_1}} \right)}^2} + {{\left( {\frac{{\sqrt 2 }}{2}{{\rm{x}}_2} + \frac{{\sqrt 2 }}{2}{{\rm{y}}_2} - \frac{{\sqrt 2 }}{2}{{\rm{x}}_1} - \frac{{\sqrt 2 }}{2}{{\rm{y}}_1}} \right)}^2}} \)
\( = \sqrt {\frac{1}{2}{{\left( {{{\rm{x}}_2} - {{\rm{y}}_2} - {{\rm{x}}_1} + {{\rm{y}}_1}} \right)}^2} + \frac{1}{2}{{\left( {{{\rm{x}}_2} + {{\rm{y}}_2} - {{\rm{x}}_1} - {{\rm{y}}_1}} \right)}^2}} \)
\( = \frac{{\sqrt 2 }}{2}\sqrt {{{\left( {{{\rm{x}}_2} - {{\rm{x}}_1} - {{\rm{y}}_2} + {{\rm{y}}_1}} \right)}^2} + {{\left( {{{\rm{x}}_2} - {{\rm{x}}_1} + {{\rm{y}}_2} - {{\rm{y}}_1}} \right)}^2}} \)
\( = \frac{{\sqrt 2 }}{2}\sqrt {{{\left[ {\left( {{{\rm{x}}_2} - {{\rm{x}}_1}} \right) - \left( {{{\rm{y}}_2} - {{\rm{y}}_1}} \right)} \right]}^2} + {{\left[ {\left( {{{\rm{x}}_2} - {{\rm{x}}_1}} \right) + \left( {{{\rm{y}}_2} - {{\rm{y}}_1}} \right)} \right]}^2}} \)
\( = \frac{{\sqrt 2 }}{2}\sqrt {{{\left( {{{\rm{x}}_2} - {{\rm{x}}_1}} \right)}^2} - 2\left( {{{\rm{x}}_2} - {{\rm{x}}_1}} \right)\left( {{{\rm{y}}_2} - {{\rm{y}}_1}} \right) + {{\left( {{{\rm{y}}_2} - {{\rm{y}}_1}} \right)}^2} + {{\left( {{{\rm{x}}_2} - {{\rm{x}}_1}} \right)}^2} + 2\left( {{{\rm{x}}_2} - {{\rm{x}}_1}} \right)\left( {{{\rm{y}}_2} - {{\rm{y}}_1}} \right) + {{\left( {{{\rm{y}}_2} - {{\rm{y}}_1}} \right)}^2}} \)
\( = \frac{{\sqrt 2 }}{2}\sqrt {2{{\left( {{{\rm{x}}_2} - {{\rm{x}}_1}} \right)}^2} + 2{{\left( {{{\rm{y}}_2} - {{\rm{y}}_1}} \right)}^2}} \)
\( = \frac{{\sqrt 2 }}{2}\sqrt {2\left[ {{{\left( {{{\rm{x}}_2} - {{\rm{x}}_1}} \right)}^2} + {{\left( {{{\rm{y}}_2} - {{\rm{y}}_1}} \right)}^2}} \right]} \)
\( = \frac{{\sqrt 2 }}{2}.\sqrt 2 \sqrt {{{\left( {{{\rm{x}}_2} - {{\rm{x}}_1}} \right)}^2} + {{\left( {{{\rm{y}}_2} - {{\rm{y}}_1}} \right)}^2}} \)
\( = \sqrt {{{\left( {{{\rm{x}}_2} - {{\rm{x}}_1}} \right)}^2} + {{\left( {{{\rm{y}}_2} - {{\rm{y}}_1}} \right)}^2}} \)
\( = MN\).
Vậy h là một phép dời hình.
Bài 5 trang 10 Chuyên đề học tập Toán 11 Chân trời sáng tạo là một bài tập quan trọng trong chương trình học. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về giới hạn của hàm số, đặc biệt là giới hạn tại vô cùng và các quy tắc tính giới hạn. Việc nắm vững kiến thức này là nền tảng để học sinh tiếp cận các bài toán phức tạp hơn trong chương trình Toán 11.
Bài 5 thường bao gồm các dạng bài tập sau:
Để giải bài 5 trang 10 Chuyên đề học tập Toán 11 Chân trời sáng tạo, chúng ta cần thực hiện các bước sau:
Bài toán: Tính limx→∞ (2x2 + 3x - 1) / (x2 + 5)
Lời giải:
Ta có:
limx→∞ (2x2 + 3x - 1) / (x2 + 5) = limx→∞ (2 + 3/x - 1/x2) / (1 + 5/x2)
Vì limx→∞ 3/x = 0 và limx→∞ 1/x2 = 0 và limx→∞ 5/x2 = 0, nên:
limx→∞ (2x2 + 3x - 1) / (x2 + 5) = (2 + 0 - 0) / (1 + 0) = 2
Để hiểu rõ hơn về giới hạn, bạn có thể tham khảo:
Hy vọng bài giải chi tiết này sẽ giúp bạn hiểu rõ hơn về bài 5 trang 10 Chuyên đề học tập Toán 11 Chân trời sáng tạo. Chúc bạn học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập