Tusach.vn xin giới thiệu lời giải chi tiết và dễ hiểu cho mục 2 trang 6, 7, 8 của Chuyên đề học tập Toán 11 - Kết nối tri thức. Bài giải được trình bày rõ ràng, logic, giúp học sinh dễ dàng nắm bắt kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 11, đảm bảo cung cấp cho bạn nguồn tài liệu học tập đáng tin cậy.
Trên mặt phẳng tọa độ Oxy, cho phép biến hình f biến mỗi điểm (Mleft( {x;{rm{ }}y} right)) thành điểm (M'left( {x{rm{ }} + {rm{ }}1;{rm{ }}y{rm{ }} + {rm{ }}2} right).)
Trên mặt phẳng tọa độ Oxy, cho phép biến hình f biến mỗi điểm \(M\left( {x;{\rm{ }}y} \right)\) thành điểm \(M'\left( {x{\rm{ }} + {\rm{ }}1;{\rm{ }}y{\rm{ }} + {\rm{ }}2} \right).\)
a) Xét các điểm \(A\left( {-{\rm{ }}1;{\rm{ }}5} \right),{\rm{ }}B\left( {2;{\rm{ }}2} \right),{\rm{ }}C\left( {4;{\rm{ }}0} \right)\) thuộc \(\Delta :{\rm{ }}x{\rm{ }} + {\rm{ }}y{\rm{ }}-{\rm{ }}4{\rm{ }} = {\rm{ }}0\). Xác định các ảnh của chúng qua f.
b) Chứng minh rằng nếu \(M\left( {{x_0};{\rm{ }}{y_0}} \right)\) là điểm thuộc đường thẳng \(\Delta :{\rm{ }}x{\rm{ }} + {\rm{ }}y{\rm{ }}-{\rm{ }}4{\rm{ }} = {\rm{ }}0\) thì ảnh \(M'\left( {{x_0}\; + {\rm{ }}1;{\rm{ }}{y_0}\; + {\rm{ }}2} \right)\) của nó thuộc đường thẳng \(\Delta ':{\rm{ }}x + {\rm{ }}y{\rm{ }}-{\rm{ }}7{\rm{ }} = {\rm{ }}0.\;\;\)

Phương pháp giải:
Phép biến hình f trong mặt phẳng là một quy tắc cho tương ứng với mỗi điểm M với duy nhất một điểm M’. Điểm M’ được gọi là ảnh của điểm M qua phép biến hình f, kí hiệu \(M' = f(M)\).
Lời giải chi tiết:
a) Ảnh của điểm A(– 1; 5) qua phép biến hình f là điểm \(A'\left( {-{\rm{ }}1{\rm{ }} + {\rm{ }}1;{\rm{ }}5{\rm{ }} + {\rm{ }}2} \right)\) hay \(A'\left( {0;{\rm{ }}7} \right).\)
Ảnh của điểm B(2; 3) qua phép biến hình f là điểm \(B'\left( {2{\rm{ }} + {\rm{ }}1;{\rm{ }}3{\rm{ }} + {\rm{ }}2} \right)\) hay \(B'\left( {3;{\rm{ }}5} \right).\)
Ảnh của điểm C(4; 0) qua phép biến hình f là điểm \(C'\left( {4{\rm{ }} + {\rm{ }}1;{\rm{ }}0{\rm{ }} + {\rm{ }}2} \right)\) hay \(C'\left( {5;{\rm{ }}2} \right).\)
b) Vì \(M\left( {{x_0};{\rm{ }}{y_0}} \right)\) thuộc \(\Delta :{\rm{ }}x{\rm{ }} + {\rm{ }}y{\rm{ }}-{\rm{ }}4{\rm{ }} = {\rm{ }}0\) nên \({x_0}\; + {\rm{ }}{y_0}\;-{\rm{ }}4{\rm{ }} = {\rm{ }}0\) hay \({x_0}\; + {\rm{ }}{y_{0\;}} = {\rm{ }}4\)
\(\begin{array}{*{20}{l}}{ \Leftrightarrow \;{x_0}\; + {\rm{ }}{y_0}\; + {\rm{ }}3{\rm{ }} = {\rm{ }}4{\rm{ }} + {\rm{ }}3}\\{ \Leftrightarrow \;\left( {{x_0}\; + {\rm{ }}1} \right){\rm{ }} + {\rm{ }}\left( {{y_{0\;}} + {\rm{ }}2} \right){\rm{ }} = {\rm{ }}7}\\{ \Leftrightarrow \;\left( {{x_0}\; + {\rm{ }}1} \right){\rm{ }} + {\rm{ }}\left( {{y_{0\;}} + {\rm{ }}2} \right){\rm{ }}-{\rm{ }}7{\rm{ }} = {\rm{ }}0}\end{array}\)
Suy ra \(M'\left( {{x_0}\; + {\rm{ }}1;{\rm{ }}{y_0}\; + {\rm{ }}2} \right)\) thuộc đường thẳng \(\Delta ':{\rm{ }}x{\rm{ }} + {\rm{ }}y{\rm{ }}-{\rm{ }}7{\rm{ }} = {\rm{ }}0.\)
Quan sát ba tấm ảnh hoa hồng ở Hình 1.4, hãy cho biết hình nào giống ảnh của hình ở giữa qua một phép co về trục.

Phương pháp giải:
Quan sát hình vẽ để trả lời
Lời giải chi tiết:
Quan sát Hình 1.4, ta thấy hình phía bên phải hình ở giữa giống ảnh của hình ở giữa qua một phép co về trục.
Trên mặt phẳng tọa độ Oxy, cho phép biến hình f biến mỗi điểm \(M\left( {x;{\rm{ }}y} \right)\) thành điểm \(M'\left( {x{\rm{ }} + {\rm{ }}1;{\rm{ }}y{\rm{ }} + {\rm{ }}2} \right).\)
a) Xét các điểm \(A\left( {-{\rm{ }}1;{\rm{ }}5} \right),{\rm{ }}B\left( {2;{\rm{ }}2} \right),{\rm{ }}C\left( {4;{\rm{ }}0} \right)\) thuộc \(\Delta :{\rm{ }}x{\rm{ }} + {\rm{ }}y{\rm{ }}-{\rm{ }}4{\rm{ }} = {\rm{ }}0\). Xác định các ảnh của chúng qua f.
b) Chứng minh rằng nếu \(M\left( {{x_0};{\rm{ }}{y_0}} \right)\) là điểm thuộc đường thẳng \(\Delta :{\rm{ }}x{\rm{ }} + {\rm{ }}y{\rm{ }}-{\rm{ }}4{\rm{ }} = {\rm{ }}0\) thì ảnh \(M'\left( {{x_0}\; + {\rm{ }}1;{\rm{ }}{y_0}\; + {\rm{ }}2} \right)\) của nó thuộc đường thẳng \(\Delta ':{\rm{ }}x + {\rm{ }}y{\rm{ }}-{\rm{ }}7{\rm{ }} = {\rm{ }}0.\;\;\)

Phương pháp giải:
Phép biến hình f trong mặt phẳng là một quy tắc cho tương ứng với mỗi điểm M với duy nhất một điểm M’. Điểm M’ được gọi là ảnh của điểm M qua phép biến hình f, kí hiệu \(M' = f(M)\).
Lời giải chi tiết:
a) Ảnh của điểm A(– 1; 5) qua phép biến hình f là điểm \(A'\left( {-{\rm{ }}1{\rm{ }} + {\rm{ }}1;{\rm{ }}5{\rm{ }} + {\rm{ }}2} \right)\) hay \(A'\left( {0;{\rm{ }}7} \right).\)
Ảnh của điểm B(2; 3) qua phép biến hình f là điểm \(B'\left( {2{\rm{ }} + {\rm{ }}1;{\rm{ }}3{\rm{ }} + {\rm{ }}2} \right)\) hay \(B'\left( {3;{\rm{ }}5} \right).\)
Ảnh của điểm C(4; 0) qua phép biến hình f là điểm \(C'\left( {4{\rm{ }} + {\rm{ }}1;{\rm{ }}0{\rm{ }} + {\rm{ }}2} \right)\) hay \(C'\left( {5;{\rm{ }}2} \right).\)
b) Vì \(M\left( {{x_0};{\rm{ }}{y_0}} \right)\) thuộc \(\Delta :{\rm{ }}x{\rm{ }} + {\rm{ }}y{\rm{ }}-{\rm{ }}4{\rm{ }} = {\rm{ }}0\) nên \({x_0}\; + {\rm{ }}{y_0}\;-{\rm{ }}4{\rm{ }} = {\rm{ }}0\) hay \({x_0}\; + {\rm{ }}{y_{0\;}} = {\rm{ }}4\)
\(\begin{array}{*{20}{l}}{ \Leftrightarrow \;{x_0}\; + {\rm{ }}{y_0}\; + {\rm{ }}3{\rm{ }} = {\rm{ }}4{\rm{ }} + {\rm{ }}3}\\{ \Leftrightarrow \;\left( {{x_0}\; + {\rm{ }}1} \right){\rm{ }} + {\rm{ }}\left( {{y_{0\;}} + {\rm{ }}2} \right){\rm{ }} = {\rm{ }}7}\\{ \Leftrightarrow \;\left( {{x_0}\; + {\rm{ }}1} \right){\rm{ }} + {\rm{ }}\left( {{y_{0\;}} + {\rm{ }}2} \right){\rm{ }}-{\rm{ }}7{\rm{ }} = {\rm{ }}0}\end{array}\)
Suy ra \(M'\left( {{x_0}\; + {\rm{ }}1;{\rm{ }}{y_0}\; + {\rm{ }}2} \right)\) thuộc đường thẳng \(\Delta ':{\rm{ }}x{\rm{ }} + {\rm{ }}y{\rm{ }}-{\rm{ }}7{\rm{ }} = {\rm{ }}0.\)
Quan sát ba tấm ảnh hoa hồng ở Hình 1.4, hãy cho biết hình nào giống ảnh của hình ở giữa qua một phép co về trục.

Phương pháp giải:
Quan sát hình vẽ để trả lời
Lời giải chi tiết:
Quan sát Hình 1.4, ta thấy hình phía bên phải hình ở giữa giống ảnh của hình ở giữa qua một phép co về trục.
Mục 2 của Chuyên đề học tập Toán 11 - Kết nối tri thức thường tập trung vào một chủ đề cụ thể, đòi hỏi học sinh phải nắm vững lý thuyết và áp dụng linh hoạt vào giải bài tập. Việc hiểu rõ bản chất của vấn đề và lựa chọn phương pháp giải phù hợp là yếu tố then chốt để đạt kết quả tốt.
Để giải quyết hiệu quả các bài tập trong mục này, trước tiên chúng ta cần xác định rõ nội dung chính mà chuyên đề hướng tới. Thông thường, mục 2 sẽ đi sâu vào:
Dưới đây là hướng dẫn giải chi tiết các bài tập trong mục 2 trang 6, 7, 8 Chuyên đề học tập Toán 11 - Kết nối tri thức:
(Giả sử bài 1 yêu cầu tính giới hạn của một hàm số)
(Giả sử bài 2 yêu cầu chứng minh một đẳng thức lượng giác)
Để chứng minh một đẳng thức lượng giác, chúng ta có thể sử dụng các phương pháp sau:
(Giả sử bài 3 yêu cầu giải một phương trình lượng giác)
Khi giải phương trình lượng giác, chúng ta cần:
Trong quá trình giải toán, hãy luôn:
Tusach.vn cam kết cung cấp lời giải chi tiết, chính xác và dễ hiểu cho tất cả các bài tập trong sách giáo khoa và chuyên đề Toán 11. Hãy truy cập website của chúng tôi để khám phá thêm nhiều tài liệu học tập hữu ích và nâng cao kiến thức của bạn!
| Bài tập | Trang | Mức độ khó |
|---|---|---|
| Bài 1 | 6 | Dễ |
| Bài 2 | 7 | Trung bình |
| Bài 3 | 8 | Khó |
| Nguồn: Tusach.vn | ||
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập