1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 1.29 trang 33 Chuyên đề học tập Toán 11 Kết nối tri thức

Giải bài 1.29 trang 33 Chuyên đề học tập Toán 11 Kết nối tri thức

Giải bài 1.29 trang 33 Chuyên đề học tập Toán 11 Kết nối tri thức

Bài 1.29 thuộc Chuyên đề học tập Toán 11 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Bài viết này sẽ cung cấp lời giải chi tiết, dễ hiểu cùng với phương pháp giải bài tập này.

tusach.vn luôn đồng hành cùng học sinh trong quá trình học tập, cung cấp tài liệu và giải bài tập chất lượng.

Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): x2 + y2 – 2x – 4y – 4 = 0.

Đề bài

Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): x2 + y2 – 2x – 4y – 4 = 0. Viết phương trình của đường tròn (C') là ảnh của đường tròn (C) qua phép đối xứng tâm A(3; – 3).

Phương pháp giải - Xem chi tiếtGiải bài 1.29 trang 33 Chuyên đề học tập Toán 11 Kết nối tri thức 1

Cho điểm O, phép biến hình biến điểm O thành chính nó và biến mỗi điểm \(M \ne O\) thành điểm M’ sao cho O là trung điểm của MM’ được gọi là phép đối xứn tâm O, kí hiệu . Điểm O được gọi là tâm đối xứng.

Nếu thì \(\left\{ \begin{array}{l}{x_{M'}} + {x_M} = 2{x_I}\\{y_{M'}} + {y_M} = 2{y_I}\end{array} \right.\) (I là trung điểm của MM’)

Lời giải chi tiết

Ta có \(\left( C \right):{\rm{ }}{x^2} + {y^2}-2x-4y-4 = 0 \Leftrightarrow {x^2} + {y^2}-2.1{\rm{ }}x-2.2y-4 = 0.\)

Suy ra đường tròn (C) có tâm I(1; 2) và bán kính \(R = \sqrt {{1^2} + {2^2} - \left( { - 4} \right)} = 3\).

Gọi I' và R' lần lượt là tâm và bán kính của đường tròn (C'). Vì (C') là ảnh của (C) qua phép đối xứng tâm A(3; – 3) nên I' là ảnh của I qua phép đối xứng tâm A(3; – 3) và R' = R = 3.

Vì I' là ảnh của I qua phép đối xứng tâm A nên A là trung điểm của II'.

Suy ra \(\left\{ {\begin{array}{*{20}{l}}{{x_{I'}} = 2{x_A} - {x_I} = 2.3 - 1 = 5}\\{{y_{I'}} = 2{y_A} - {y_I} = 2.\left( { - 3} \right) - 2 = - 8}\end{array}} \right.\)nên I'(5; – 8).

Vậy phương trình đường tròn (C') là

\({\left( {x-5} \right)^2}\; + {\rm{ }}{\left[ {y-\left( {-8} \right)} \right]^2} = {3^2}\; \Leftrightarrow {\left( {x-5} \right)^2}\; + {\left( {y + 8} \right)^2}\; = 9.\)

Giải bài 1.29 trang 33 Chuyên đề học tập Toán 11 Kết nối tri thức: Hướng dẫn chi tiết

Bài 1.29 trang 33 Chuyên đề học tập Toán 11 Kết nối tri thức yêu cầu chúng ta khảo sát hàm số và tìm các điểm cực trị. Để giải bài này, chúng ta cần nắm vững các kiến thức về đạo hàm, điều kiện cực trị và cách xác định khoảng đồng biến, nghịch biến của hàm số.

Đề bài

Cho hàm số y = f(x) = x3 - 3x2 + 2. Hãy:

  1. Tìm đạo hàm f'(x).
  2. Tìm các điểm cực trị của hàm số.
  3. Xác định khoảng đồng biến, nghịch biến của hàm số.

Lời giải

1. Tìm đạo hàm f'(x)

Áp dụng quy tắc đạo hàm của hàm số đa thức, ta có:

f'(x) = 3x2 - 6x

2. Tìm các điểm cực trị của hàm số

Để tìm các điểm cực trị, ta giải phương trình f'(x) = 0:

3x2 - 6x = 0

3x(x - 2) = 0

Vậy, x = 0 hoặc x = 2.

Để xác định xem các điểm này là điểm cực đại hay cực tiểu, ta xét dấu của f'(x) trên các khoảng xác định:

  • Khoảng (-∞, 0): Chọn x = -1, f'(-1) = 3(-1)2 - 6(-1) = 9 > 0, hàm số đồng biến.
  • Khoảng (0, 2): Chọn x = 1, f'(1) = 3(1)2 - 6(1) = -3 < 0, hàm số nghịch biến.
  • Khoảng (2, +∞): Chọn x = 3, f'(3) = 3(3)2 - 6(3) = 9 > 0, hàm số đồng biến.

Từ đó, ta kết luận:

  • Tại x = 0, hàm số đạt cực đại và giá trị cực đại là f(0) = 03 - 3(0)2 + 2 = 2.
  • Tại x = 2, hàm số đạt cực tiểu và giá trị cực tiểu là f(2) = 23 - 3(2)2 + 2 = 0.

3. Xác định khoảng đồng biến, nghịch biến của hàm số

Dựa vào bảng xét dấu của f'(x), ta có:

  • Hàm số đồng biến trên các khoảng (-∞, 0) và (2, +∞).
  • Hàm số nghịch biến trên khoảng (0, 2).

Kết luận

Vậy, bài 1.29 trang 33 Chuyên đề học tập Toán 11 Kết nối tri thức đã được giải quyết hoàn toàn. Hy vọng rằng lời giải chi tiết này sẽ giúp các em hiểu rõ hơn về cách giải các bài tập về khảo sát hàm số bằng đạo hàm.

Mở rộng

Để nắm vững hơn kiến thức về đạo hàm và ứng dụng của đạo hàm, các em có thể tham khảo thêm các bài tập tương tự trong sách giáo khoa và các tài liệu tham khảo khác. tusach.vn sẽ tiếp tục cập nhật và cung cấp các lời giải bài tập Toán 11 một cách nhanh chóng và chính xác nhất.

ĐiểmGiá trị
Cực đại(0, 2)
Cực tiểu(2, 0)

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN