1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 2.15 trang 49 Chuyên đề học tập Toán 11 Kết nối tri thức

Giải bài 2.15 trang 49 Chuyên đề học tập Toán 11 Kết nối tri thức

Giải bài 2.15 trang 49 Chuyên đề học tập Toán 11 Kết nối tri thức

Bài 2.15 trang 49 Chuyên đề học tập Toán 11 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.

Tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Tìm đường đi ngắn nhất từ A đến D trong đồ thị có trọng số trên Hình 2.33.

Đề bài

Tìm đường đi ngắn nhất từ A đến D trong đồ thị có trọng số trên Hình 2.33.

Giải bài 2.15 trang 49 Chuyên đề học tập Toán 11 Kết nối tri thức 1

Phương pháp giải - Xem chi tiếtGiải bài 2.15 trang 49 Chuyên đề học tập Toán 11 Kết nối tri thức 2

Giải bài tán bằng thuật toán tìm đường đi ngắn nhất: Ta xuất phát từ đỉnh A và di chuyển theo các cạnh của đồ thị. Với mỗi đỉnh V, ta gắn một số \(I(V)\) là khoảng cách ngắn nhất để đi từ A đến V, gọi là nhãn vĩnh viễn của đỉnh V. Như vậy, để tìm độ dài của đường đi ngắn nhất nối A với F, ta cần tìm \(I(F)\).

Lời giải chi tiết

Đầu tiên, ta gắn nhãn đỉnh A là I(A) = 0 và gắn cho ba đỉnh kề với A là B, F và D các nhãn tạm thời I(A) + 4, I(A) + 3 và I(A) + 20. Chọn số nhỏ nhất trong chúng và viết I(F) = 3. Đỉnh F bây giờ được gắn nhãn vĩnh viễn là 3.

 Tiếp theo, ta gắn cho các đỉnh kề với F là B, C và E các nhãn tạm thời I(F) + 6, I(F) + 5 và I(F) + 15 (B hiện có hai nhãn tạm thời là 4 và 9). Nhãn tạm thời nhỏ nhất trong các nhãn đã gán (ở B, C, E) hiện nay là 4 (tại B), nên ta viết I(B) = 4. Đỉnh B được gắn nhãn vĩnh viễn là 4.

Bây giờ ta xét các đỉnh kề với B (mà chưa được gắn nhãn vĩnh viễn) là C và E. Ta gắn cho đỉnh C nhãn tạm thời là I(B) + 11 (hiện C có hai nhãn tạm thời là 8 và 15), gắn cho đỉnh E nhãn tạm thời là I(B) + 9 (E hiện có hai nhãn tạm thời là 18 và 13. Nhãn tạm thời nhỏ nhất bây giờ là 8 (tại C), do đó ta viết I(C) = 8.

Bây giờ ta xét các đỉnh kề với C (mà chưa được gắn nhãn vĩnh viễn) là E và D. Ta gắn nhãn cho đỉnh E tạm thời là I(C) + 2 (hiện E có ba nhãn tạm thời là 18, 13 và 10), gắn cho đỉnh D nhãn tạm thời là I(C) + 10. Nhãn tạm thời nhỏ nhất bây giờ là 10 (tại E), do đó ta viết I(E) = 10.

Xét đỉnh kề với E là D, ta gắn cho D nhãn tạm thời I(E) + 7 (hiện D có hai nhãn tạm thời là 18 và 17). Vậy đỉnh D sẽ được gắn nhãn vĩnh viễn là 17 hay I(D) = 17.

 Vì I(D) = 17 nên đường đi ngắn nhất từ A đến D có độ dài là 17.

Giải bài 2.15 trang 49 Chuyên đề học tập Toán 11 Kết nối tri thức 3

Để tìm một đường đi ngắn nhất từ A đến D như vậy, ta sẽ lần ngược từ điểm cuối D. Ta chỉ cần giới hạn ở việc xét những cạnh mà độ dài là hiệu của các nhãn gắn tại đầu các mút của nó, đó là DE, EC, CF và FA (do I(D) – I(E) = 17 = 10 = 7, I(E) – I(C) = 10 – 8 = 2, I(C) – I(F) = 8 – 3 = 5 và I(F) – I(A) = 3 – 0 = 3).

Khi đó ta có thể kết luận, đường đi ngắn nhất từ A đến D phải đi qua các cạnh DE, EC, CF và FA.

 Vậy, đường đi ngắn nhất (trong trường hợp này là duy nhất) từ A đến D là

\(A \to F \to C \to E \to D.\)

Giải bài 2.15 trang 49 Chuyên đề học tập Toán 11 Kết nối tri thức: Hướng dẫn chi tiết

Bài 2.15 trang 49 Chuyên đề học tập Toán 11 Kết nối tri thức yêu cầu học sinh giải một bài toán liên quan đến việc tìm đạo hàm và sử dụng đạo hàm để xác định tính đơn điệu của hàm số. Để giải bài toán này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:

  • Định nghĩa đạo hàm: Đạo hàm của hàm số f(x) tại điểm x được ký hiệu là f'(x) và biểu thị tốc độ thay đổi tức thời của hàm số tại điểm đó.
  • Các quy tắc tính đạo hàm: Quy tắc tính đạo hàm của tổng, hiệu, tích, thương và hàm hợp.
  • Đạo hàm của các hàm số cơ bản: Đạo hàm của hàm số lũy thừa, hàm số lượng giác, hàm số mũ và hàm số logarit.
  • Ứng dụng của đạo hàm: Sử dụng đạo hàm để xét tính đơn điệu của hàm số, tìm cực trị của hàm số và giải các bài toán tối ưu.

Lời giải chi tiết bài 2.15 trang 49

Để giải bài 2.15 trang 49, chúng ta thực hiện các bước sau:

  1. Tính đạo hàm f'(x) của hàm số f(x). Sử dụng các quy tắc tính đạo hàm đã học để tìm đạo hàm của hàm số.
  2. Tìm các điểm dừng của hàm số. Giải phương trình f'(x) = 0 để tìm các điểm mà tại đó đạo hàm bằng 0. Các điểm này là các điểm cực trị hoặc điểm uốn của hàm số.
  3. Xét dấu của đạo hàm f'(x) trên các khoảng xác định. Xác định dấu của đạo hàm trên các khoảng xác định để xác định tính đơn điệu của hàm số. Nếu f'(x) > 0 trên một khoảng, hàm số đồng biến trên khoảng đó. Nếu f'(x) < 0 trên một khoảng, hàm số nghịch biến trên khoảng đó.
  4. Kết luận về tính đơn điệu của hàm số. Dựa vào dấu của đạo hàm, kết luận về các khoảng đồng biến và nghịch biến của hàm số.

Ví dụ minh họa

Giả sử hàm số f(x) = x3 - 3x2 + 2. Chúng ta sẽ áp dụng các bước trên để giải bài toán:

  1. Tính đạo hàm: f'(x) = 3x2 - 6x
  2. Tìm điểm dừng: 3x2 - 6x = 0 => x = 0 hoặc x = 2
  3. Xét dấu đạo hàm:
    • Khi x < 0: f'(x) > 0 => Hàm số đồng biến
    • Khi 0 < x < 2: f'(x) < 0 => Hàm số nghịch biến
    • Khi x > 2: f'(x) > 0 => Hàm số đồng biến
  4. Kết luận: Hàm số đồng biến trên các khoảng (-∞, 0) và (2, +∞), nghịch biến trên khoảng (0, 2).

Lưu ý quan trọng

Khi giải bài toán về đạo hàm và ứng dụng của đạo hàm, cần chú ý các điểm sau:

  • Nắm vững các định nghĩa và quy tắc tính đạo hàm.
  • Kiểm tra kỹ các bước tính toán để tránh sai sót.
  • Phân tích kỹ đề bài để xác định đúng yêu cầu của bài toán.
  • Sử dụng các công cụ hỗ trợ như máy tính bỏ túi hoặc phần mềm toán học để kiểm tra kết quả.

Bài tập tương tự

Để củng cố kiến thức, các em có thể tự giải các bài tập tương tự sau:

  • Bài 2.16 trang 49 Chuyên đề học tập Toán 11 Kết nối tri thức
  • Bài 2.17 trang 50 Chuyên đề học tập Toán 11 Kết nối tri thức

Tusach.vn hy vọng với lời giải chi tiết và hướng dẫn cụ thể này, các em học sinh sẽ hiểu rõ hơn về bài 2.15 trang 49 Chuyên đề học tập Toán 11 Kết nối tri thức và tự tin giải các bài tập tương tự. Chúc các em học tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN