Bài 1.11 trang 20 Chuyên đề học tập Toán 11 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về dãy số, cấp số cộng và cấp số nhân.
Tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp các em học sinh nắm vững kiến thức và phương pháp giải bài tập này.
Trong Hình 1.31, BAM và CAN là các tam giác vuông cân tại A. Hãy chỉ ra một phép quay biến tam giác ABC thành tam giác AMN.
Đề bài
Trong Hình 1.31, BAM và CAN là các tam giác vuông cân tại A. Hãy chỉ ra một phép quay biến tam giác ABC thành tam giác AMN.

Phương pháp giải - Xem chi tiết
Ta cần tìm tâm và góc quay: Trong mặt phẳng, cho điểm O cố định và góc lượng giác \(\alpha \) không đổi. Phép biến hình biến điểm O thành điểm O và biến mỗi điểm M khác O thành M’ sao cho \(OM = OM'\) và góc lượng giác \(\left( {OM,OM'} \right) = \alpha \) được gọi là phép quay tâm O với góc quay \(\alpha \), kí hiệu \({Q_{\left( {O,\alpha } \right)}}\). O gọi là tâm quay, \(\alpha \) gọi là góc quay.
Lời giải chi tiết
Tam giác BAM vuông cân tại A nên AB = AM và \(\widehat {BAM} = 90^\circ \). Do đó, ta có phép quay \({Q_{(A,{\rm{ }}-{\rm{ }}90^\circ )}}\) biến điểm A thành điểm A, biến điểm B thành điểm M (1).
Tam giác ACN vuông cân tại A nên AC = AN và \(\widehat {CAN} = 90^\circ \). Do đó, ta có phép quay \({Q_{(A,{\rm{ }}-{\rm{ }}90^\circ )}}\) biến điểm C thành điểm N (2).
Từ (1) và (2) suy ra phép quay \({Q_{(A,{\rm{ }}-{\rm{ }}90^\circ )}}\) biến tam giác ABC thành tam giác AMN.
Bài 1.11 trang 20 Chuyên đề học tập Toán 11 Kết nối tri thức yêu cầu chúng ta tìm hiểu về dãy số và các tính chất của nó. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các khái niệm cơ bản như dãy số, cấp số cộng, cấp số nhân, và các công thức liên quan.
Bài tập 1.11 thường xoay quanh việc xác định một dãy số dựa trên các thông tin cho trước, hoặc tìm số hạng tổng quát của dãy số. Đôi khi, bài tập cũng yêu cầu chúng ta tính tổng của một số hạng đầu tiên của dãy số.
Để giải bài tập này, chúng ta có thể áp dụng các phương pháp sau:
(Ở đây sẽ là lời giải chi tiết của bài tập 1.11 trang 20. Ví dụ:)
Giả sử bài tập yêu cầu tìm số hạng thứ 5 của dãy số 2, 5, 8, ...
Ta thấy đây là một cấp số cộng với số hạng đầu tiên u1 = 2 và công sai d = 3.
Số hạng thứ n của cấp số cộng được tính theo công thức: un = u1 + (n-1)d
Vậy, số hạng thứ 5 của dãy số là: u5 = 2 + (5-1) * 3 = 14
Để hiểu rõ hơn về cách giải bài tập 1.11 trang 20, chúng ta hãy xem xét một số ví dụ minh họa và bài tập tương tự:
Khi giải bài tập về dãy số, chúng ta cần chú ý đến các yếu tố sau:
Tusach.vn là một website cung cấp đầy đủ các tài liệu học tập Toán 11, bao gồm sách giáo khoa, sách bài tập, đề thi và lời giải chi tiết. Chúng tôi luôn cập nhật những thông tin mới nhất và hữu ích nhất để giúp các em học sinh học tập tốt hơn.
Hãy truy cập tusach.vn để khám phá thêm nhiều tài liệu học tập Toán 11 và các môn học khác!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập