Chào mừng các em học sinh đến với lời giải chi tiết mục 1 trang 26, 27 Chuyên đề học tập Toán 11 - Kết nối tri thức trên tusach.vn. Chúng tôi hiểu rằng việc tự học đôi khi gặp nhiều khó khăn, đặc biệt là với những bài tập chuyên sâu.
Với đội ngũ giáo viên giàu kinh nghiệm, tusach.vn mang đến cho các em những lời giải chính xác, dễ hiểu, cùng với các phương pháp giải bài tập hiệu quả.
Trong hai bức tranh ở Hình 1.41, các hình chữ nhật ABCD, A'B'C'D' có các cạnh tương ứng song song, bức tranh lớn có kích thước gấp đôi bức tranh nhỏ.
Phép vị tự \({V_{(O,{\rm{ }}k)}}\) biến điểm O thành điểm nào? Nếu phép vị tự \({V_{(O,{\rm{ }}k)}}\) biến điểm M thành điểm M' thì phép vị tự \({V_{\left( {O,\frac{1}{k}} \right)}}\) biến điểm M' thành điểm nào?
Phương pháp giải:
Nếu phép vị tự tâm O tỉ số k \(\left( {k \ne 0} \right)\) lần lượt biến 2 điểm A, B thành 2 điểm A’, B’ thì \(A'B' = \left| k \right|AB\)
Lời giải chi tiết:
- Phép vị tự \({V_{(O,{\rm{ }}k)}}\) biến điểm O thành điểm O.
- Nếu phép vị tự \({V_{(O,{\rm{ }}k)}}\) biến điểm M thành điểm M' thì phép vị tự \({V_{\left( {O,\frac{1}{k}} \right)}}\) biến điểm M' thành điểm M.
Thật vậy, nếu M' là ảnh M qua phép vị tự \({V_{(O,{\rm{ }}k)}}\) thì \(\overrightarrow {OM'} = k\overrightarrow {OM} \Leftrightarrow \overrightarrow {OM} = \frac{1}{k}\overrightarrow {OM'} \). Điều này có nghĩa là M là ảnh của M' qua phép vị tự \({V_{\left( {O,\frac{1}{k}} \right)}}\).
Chứng minh rằng, phép vị tự \({V_{(O,{\rm{ }}1)}}\) là phép đồng nhất, phép vị tự \({V_{\left( {o,-1} \right)}}\;\) là phép đối xứng tâm O.
Phương pháp giải:
Nếu phép vị tự tâm O tỉ số k \(\left( {k \ne 0} \right)\) lần lượt biến 2 điểm A, B thành 2 điểm A’, B’ thì \(A'B' = \left| k \right|AB\)
Lời giải chi tiết:
+ Phép vị tự \({V_{(O,{\rm{ }}1)}}\) biến điểm M thành điểm M' thỏa mãn \(\overrightarrow {OM'} = \overrightarrow {OM} \). Khi đó M' trùng với M. Do đó, phép vị tự \({V_{(O,{\rm{ }}1)}}\) là phép đồng nhất.
+ Phép vị tự \({V_{\left( {o,-1} \right)}}\;\) biến điểm M thành điểm M" thỏa mãn . Khi đó O là trung điểm của MM". Do đó, M" là ảnh của M qua phép đối xứng tâm O hay phép vị tự \({V_{\left( {o,-1} \right)}}\;\) là phép đối xứng tâm O.
Trong hai bức tranh ở Hình 1.41, các hình chữ nhật ABCD, A'B'C'D' có các cạnh tương ứng song song, bức tranh lớn có kích thước gấp đôi bức tranh nhỏ.
a) Giải thích vì sao các đường thẳng AA', BB', CC', DD' cùng đi qua một điểm O.
b) Hãy tính các tỉ số \(\frac{{OA}}{{OA'}},\,\frac{{OB}}{{OB'}},\,\frac{{OC}}{{OC'}},\,\frac{{OD}}{{OD'}}\).
c) Dùng thước thẳng nối hai điểm tương ứng nào đó trên hai bức tranh (chẳng hạn, đầu mỏ trên của chú gà ở hai bức tranh). Đường thẳng đó có đi qua O hay không?

Phương pháp giải:
Dựa vào định lí Thalès để chứng minh A, B, C, D lần lượt là trung điểm của A’O, B’O, C’O, D’O.
Lời giải chi tiết:

a) Gọi O là giao điểm của AA' và BB'.
Xét tam giác OA'B' có AB // A'B', theo định lý Thales, ta có:
\(\frac{{OA}}{{OA'}} = \frac{{OB}}{{OB'}} = \frac{{AB}}{{A'B'}} = \frac{1}{2}\)
Từ đó suy ra A, B lần lượt là trung điểm của OA' và OB'.
Gọi C" là giao điểm của BC và OC'. Vì BC // B'C' nên BC" // B'C'.
Xét tam giác OB'C' có BC" // B'C' và B là trung điểm của OB' nên BC" là đường trung bình của tam giác OB'C'. Suy ra và C" là trung điểm của OC'.
Mặt khác theo giả thiết ta có \(BC = \frac{1}{2}B'C'\). Do vậy C" trùng với C và C là trung điểm của OC'.
Chứng minh tương tự, ta được D là trung điểm của OD'.
Vậy các đường thẳng AA', BB', CC', DD' cùng đi qua một điểm O.
b) Vì A, B, C, D lần lượt là trung điểm của OA', OB', OC', OD' nên
\(\frac{{OA}}{{OA'}} = \frac{{OB}}{{OB'}} = \frac{{AB}}{{A'B'}} = \frac{1}{2}\).
c) Dùng thước thẳng nối hai điểm tương ứng trên hai bức tranh, cụ thể, đầu mỏ trên của chú gà ở hai bức tranh, ta thấy đường thẳng này đi qua điểm O.

Quan sát hai bức tranh em bé ôm chú gà ở phần mở đầu bài học và chỉ ra phép vị tự biến bức tranh nhỏ thành bức tranh lớn và phép vị tự biến bức tranh lớn thành bức tranh nhỏ.
Phương pháp giải:
Quan sát hình ảnh và tìm tỉ số k
Nếu phép vị tự tâm O tỉ số k \(\left( {k \ne 0} \right)\) lần lượt biến 2 điểm A, B thành 2 điểm A’, B’ thì \(A'B' = \left| k \right|AB\)
Lời giải chi tiết:

Ta có: \(\frac{{OA}}{{OA'}} = \frac{{OB}}{{OB'}} = \frac{{OC}}{{OC'}} = \frac{{OD}}{{OD'}} = \frac{1}{2}\) (theo HĐ1).
Suy ra \(\overrightarrow {OA'} = 2\overrightarrow {OA} ;\,\overrightarrow {OB'} = 2\overrightarrow {OB} ;\,\overrightarrow {OC'} = 2\overrightarrow {OC} ;\,\overrightarrow {OD'} = 2\overrightarrow {OD} \).
Từ đó ta có các điểm A', B', C', D' lần lượt là ảnh của các điểm A, B, C, D qua phép vị tự \({V_{\left( {O,2} \right)}}\). Do đó, phép vị tự V(O, 2) biến hình chữ nhật ABCD thành hình chữ nhật A'B'C'D'.
Vậy phép vị tự \({V_{\left( {O,2} \right)}}\) biến bức tranh nhỏ thành bức tranh lớn. Khi đó, phép vị tự \({V_{\left( {O,\frac{1}{2}} \right)}}\) biến bức tranh lớn thành bức tranh nhỏ.
Trong hai bức tranh ở Hình 1.41, các hình chữ nhật ABCD, A'B'C'D' có các cạnh tương ứng song song, bức tranh lớn có kích thước gấp đôi bức tranh nhỏ.
a) Giải thích vì sao các đường thẳng AA', BB', CC', DD' cùng đi qua một điểm O.
b) Hãy tính các tỉ số \(\frac{{OA}}{{OA'}},\,\frac{{OB}}{{OB'}},\,\frac{{OC}}{{OC'}},\,\frac{{OD}}{{OD'}}\).
c) Dùng thước thẳng nối hai điểm tương ứng nào đó trên hai bức tranh (chẳng hạn, đầu mỏ trên của chú gà ở hai bức tranh). Đường thẳng đó có đi qua O hay không?

Phương pháp giải:
Dựa vào định lí Thalès để chứng minh A, B, C, D lần lượt là trung điểm của A’O, B’O, C’O, D’O.
Lời giải chi tiết:

a) Gọi O là giao điểm của AA' và BB'.
Xét tam giác OA'B' có AB // A'B', theo định lý Thales, ta có:
\(\frac{{OA}}{{OA'}} = \frac{{OB}}{{OB'}} = \frac{{AB}}{{A'B'}} = \frac{1}{2}\)
Từ đó suy ra A, B lần lượt là trung điểm của OA' và OB'.
Gọi C" là giao điểm của BC và OC'. Vì BC // B'C' nên BC" // B'C'.
Xét tam giác OB'C' có BC" // B'C' và B là trung điểm của OB' nên BC" là đường trung bình của tam giác OB'C'. Suy ra và C" là trung điểm của OC'.
Mặt khác theo giả thiết ta có \(BC = \frac{1}{2}B'C'\). Do vậy C" trùng với C và C là trung điểm của OC'.
Chứng minh tương tự, ta được D là trung điểm của OD'.
Vậy các đường thẳng AA', BB', CC', DD' cùng đi qua một điểm O.
b) Vì A, B, C, D lần lượt là trung điểm của OA', OB', OC', OD' nên
\(\frac{{OA}}{{OA'}} = \frac{{OB}}{{OB'}} = \frac{{AB}}{{A'B'}} = \frac{1}{2}\).
c) Dùng thước thẳng nối hai điểm tương ứng trên hai bức tranh, cụ thể, đầu mỏ trên của chú gà ở hai bức tranh, ta thấy đường thẳng này đi qua điểm O.

Phép vị tự \({V_{(O,{\rm{ }}k)}}\) biến điểm O thành điểm nào? Nếu phép vị tự \({V_{(O,{\rm{ }}k)}}\) biến điểm M thành điểm M' thì phép vị tự \({V_{\left( {O,\frac{1}{k}} \right)}}\) biến điểm M' thành điểm nào?
Phương pháp giải:
Nếu phép vị tự tâm O tỉ số k \(\left( {k \ne 0} \right)\) lần lượt biến 2 điểm A, B thành 2 điểm A’, B’ thì \(A'B' = \left| k \right|AB\)
Lời giải chi tiết:
- Phép vị tự \({V_{(O,{\rm{ }}k)}}\) biến điểm O thành điểm O.
- Nếu phép vị tự \({V_{(O,{\rm{ }}k)}}\) biến điểm M thành điểm M' thì phép vị tự \({V_{\left( {O,\frac{1}{k}} \right)}}\) biến điểm M' thành điểm M.
Thật vậy, nếu M' là ảnh M qua phép vị tự \({V_{(O,{\rm{ }}k)}}\) thì \(\overrightarrow {OM'} = k\overrightarrow {OM} \Leftrightarrow \overrightarrow {OM} = \frac{1}{k}\overrightarrow {OM'} \). Điều này có nghĩa là M là ảnh của M' qua phép vị tự \({V_{\left( {O,\frac{1}{k}} \right)}}\).
Chứng minh rằng, phép vị tự \({V_{(O,{\rm{ }}1)}}\) là phép đồng nhất, phép vị tự \({V_{\left( {o,-1} \right)}}\;\) là phép đối xứng tâm O.
Phương pháp giải:
Nếu phép vị tự tâm O tỉ số k \(\left( {k \ne 0} \right)\) lần lượt biến 2 điểm A, B thành 2 điểm A’, B’ thì \(A'B' = \left| k \right|AB\)
Lời giải chi tiết:
+ Phép vị tự \({V_{(O,{\rm{ }}1)}}\) biến điểm M thành điểm M' thỏa mãn \(\overrightarrow {OM'} = \overrightarrow {OM} \). Khi đó M' trùng với M. Do đó, phép vị tự \({V_{(O,{\rm{ }}1)}}\) là phép đồng nhất.
+ Phép vị tự \({V_{\left( {o,-1} \right)}}\;\) biến điểm M thành điểm M" thỏa mãn . Khi đó O là trung điểm của MM". Do đó, M" là ảnh của M qua phép đối xứng tâm O hay phép vị tự \({V_{\left( {o,-1} \right)}}\;\) là phép đối xứng tâm O.
Quan sát hai bức tranh em bé ôm chú gà ở phần mở đầu bài học và chỉ ra phép vị tự biến bức tranh nhỏ thành bức tranh lớn và phép vị tự biến bức tranh lớn thành bức tranh nhỏ.
Phương pháp giải:
Quan sát hình ảnh và tìm tỉ số k
Nếu phép vị tự tâm O tỉ số k \(\left( {k \ne 0} \right)\) lần lượt biến 2 điểm A, B thành 2 điểm A’, B’ thì \(A'B' = \left| k \right|AB\)
Lời giải chi tiết:

Ta có: \(\frac{{OA}}{{OA'}} = \frac{{OB}}{{OB'}} = \frac{{OC}}{{OC'}} = \frac{{OD}}{{OD'}} = \frac{1}{2}\) (theo HĐ1).
Suy ra \(\overrightarrow {OA'} = 2\overrightarrow {OA} ;\,\overrightarrow {OB'} = 2\overrightarrow {OB} ;\,\overrightarrow {OC'} = 2\overrightarrow {OC} ;\,\overrightarrow {OD'} = 2\overrightarrow {OD} \).
Từ đó ta có các điểm A', B', C', D' lần lượt là ảnh của các điểm A, B, C, D qua phép vị tự \({V_{\left( {O,2} \right)}}\). Do đó, phép vị tự V(O, 2) biến hình chữ nhật ABCD thành hình chữ nhật A'B'C'D'.
Vậy phép vị tự \({V_{\left( {O,2} \right)}}\) biến bức tranh nhỏ thành bức tranh lớn. Khi đó, phép vị tự \({V_{\left( {O,\frac{1}{2}} \right)}}\) biến bức tranh lớn thành bức tranh nhỏ.
Mục 1 trang 26, 27 trong Chuyên đề học tập Toán 11 - Kết nối tri thức thường tập trung vào một chủ đề cụ thể, đòi hỏi học sinh phải nắm vững kiến thức nền tảng và áp dụng linh hoạt các công thức, định lý đã học. Để giúp các em học sinh giải quyết các bài tập một cách hiệu quả, tusach.vn xin trình bày chi tiết lời giải cho từng bài tập trong mục này.
Thông thường, mục này sẽ xoay quanh các chủ đề như:
Dưới đây là hướng dẫn giải chi tiết từng bài tập trong mục 1 trang 26, 27:
Đề bài: Tính đạo hàm của hàm số y = sin(2x + 1).
Lời giải:
Đề bài: Tìm cực trị của hàm số y = x + cos(x).
Lời giải:
Để giải các bài tập về đạo hàm hàm số lượng giác một cách nhanh chóng và hiệu quả, các em cần:
Ngoài sách giáo khoa và chuyên đề học tập, các em có thể tham khảo thêm các tài liệu sau:
Hy vọng với lời giải chi tiết và hướng dẫn cụ thể trên đây, các em học sinh sẽ tự tin hơn trong việc giải các bài tập mục 1 trang 26, 27 Chuyên đề học tập Toán 11 - Kết nối tri thức. Nếu có bất kỳ thắc mắc nào, đừng ngần ngại liên hệ với tusach.vn để được hỗ trợ nhé!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập