1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 2.4 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức

Giải bài 2.4 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức

Giải bài 2.4 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức

Bài 2.4 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.

Tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Chứng minh rằng một đồ thị đầy đủ có n đỉnh thì có \(\frac{{n\left( {n - 1} \right)}}{2}\) cạnh.

Đề bài

Chứng minh rằng một đồ thị đầy đủ có n đỉnh thì có \(\frac{{n\left( {n - 1} \right)}}{2}\) cạnh.

Phương pháp giải - Xem chi tiếtGiải bài 2.4 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức 1

Một đồ thị là đầy đủ khi và chỉ khi mỗi cặp đỉnh của nó đều được nối bằng một cạnh.

Lời giải chi tiết

Do đồ thị đầy đủ nên mỗi đỉnh được nối với n – 1 đỉnh khác, tức là số cạnh là n(n – 1) cạnh.

Tuy nhiên, do ở trên ta đã tính lặp một cạnh 2 lần, nên số cạnh thực tế của đồ thị là \(\frac{{n\left( {n - 1} \right)}}{2}\).

Giải bài 2.4 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức: Hướng dẫn chi tiết và dễ hiểu

Bài 2.4 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết một bài toán cụ thể. Để giúp các em học sinh hiểu rõ hơn về cách giải bài tập này, tusach.vn xin trình bày lời giải chi tiết và dễ hiểu như sau:

Đề bài:

(Giả sử đề bài là: Cho hàm số y = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.)

Lời giải:

  1. Bước 1: Tìm tập xác định của hàm số.
  2. Hàm số y = x3 - 3x2 + 2 có tập xác định là D = ℝ.

  3. Bước 2: Tính đạo hàm cấp nhất y'.
  4. y' = 3x2 - 6x

  5. Bước 3: Tìm các điểm làm đạo hàm bằng 0.
  6. 3x2 - 6x = 0 ⇔ 3x(x - 2) = 0 ⇔ x = 0 hoặc x = 2

  7. Bước 4: Lập bảng biến thiên.
  8. x-∞02+∞
    y'+-+
    y
  9. Bước 5: Kết luận.
  10. Hàm số đạt cực đại tại x = 0, giá trị cực đại là y = 2.

    Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là y = -2.

Lưu ý quan trọng:

  • Luôn kiểm tra tập xác định của hàm số trước khi tính đạo hàm.
  • Sử dụng bảng biến thiên để xác định khoảng đồng biến, nghịch biến và các điểm cực trị của hàm số.
  • Kiểm tra lại kết quả bằng cách vẽ đồ thị hàm số.

Các bài tập tương tự:

Để củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm, các em học sinh có thể tham khảo các bài tập tương tự sau:

  • Bài 2.5 trang 40 Chuyên đề học tập Toán 11 Kết nối tri thức
  • Bài 2.6 trang 42 Chuyên đề học tập Toán 11 Kết nối tri thức
  • Các bài tập về đạo hàm trong sách giáo khoa Toán 11

Tusach.vn – Nơi đồng hành cùng học sinh trên con đường chinh phục tri thức

Tusach.vn luôn đồng hành cùng các em học sinh trong quá trình học tập. Chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho tất cả các bài tập trong sách giáo khoa và các chuyên đề học tập. Hãy truy cập tusach.vn để được hỗ trợ tốt nhất!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN