Tusach.vn xin giới thiệu lời giải chi tiết và dễ hiểu cho mục 1 trang 12, 13 Chuyên đề học tập Toán 11 - Kết nối tri thức. Bài giải được trình bày rõ ràng, logic, giúp học sinh dễ dàng nắm bắt kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp những tài liệu học tập chất lượng nhất, hỗ trợ học sinh học tập hiệu quả và đạt kết quả tốt nhất.
Cầu Ponte Sisto in hình dưới dòng sông Tiber, tạo nên một hình ảnh có tính đối xứng trục
Xét mặt phẳng tọa độ Oxy (H.1.15). Trong các khẳng định sau, chọn các khẳng định đúng.
a) Phép đối xứng trục Ox biến mỗi điểm \(M\left( {x;{\rm{ }}y} \right)\)thành điểm có tọa độ \(\left( {x;{\rm{ }}-{\rm{ }}y} \right).\)
b) Phép đối xứng trục Oy biến mỗi điểm \(M\left( {x;{\rm{ }}y} \right)\)thành điểm có tọa độ \(\left( {-{\rm{ }}x;{\rm{ }}y} \right).\)
c) Phép đối xứng trục Ox biến A(1; 2) thành điểm \(A'\left( {-{\rm{ }}1;{\rm{ }}-{\rm{ }}2} \right).\)

Phương pháp giải:
Nếu thì biểu thức tọa độ \(\left\{ \begin{array}{l}{x_{M'}} = {x_M}\\{y_{M'}} = - {y_M}\end{array} \right.\)
Nếu thì biểu thức tọa độ \(\left\{ \begin{array}{l}{x_{M'}} = - {x_M}\\{y_{M'}} = {y_M}\end{array} \right.\)
Lời giải chi tiết:

Từ hình vẽ ta thấy:
+) Phép đối xứng trục Ox biến mỗi điểm M(x; y) thành điểm M1(x; – y).
+) Phép đối xứng trục Oy biến mỗi điểm M(x; y) thành điểm M2(– x; y).
Do đó, phép đối xứng trục Ox biến điểm A(1; 2) thành A'(1; – 2).
Vậy các khẳng định a), b) đúng và khẳng định c) sai.
Cầu Ponte Sisto in hình dưới dòng sông Tiber, tạo nên một hình ảnh có tính đối xứng trục.

a) Hãy chỉ ra trục đối xứng của hình ảnh đó.
b) Có thể đếm được bao nhiêu hình bóng điện dưới sông? Mỗi hình đó là ảnh dưới sông của bóng điện nào trên cầu?
Phương pháp giải:
Có một đường thẳng chia hình thành hai phần bằng nhau mà nếu “gấp” hình theo đường thẳng thì hai phần đó “chồng khít” lên nhau. Được gọi là hình có trục đối xứng và đường thẳng là trục đối xứng của nó.
Lời giải chi tiết:
a) Đường thẳng giao bởi cầu và mặt nước trên dòng sông là trục đối xứng của hình ảnh đó (đường màu xanh trong hình vẽ).

b) Có thể đếm được 5 bóng điện dưới dòng sông. Mỗi hình đó là ảnh dưới sông của bóng điện tương ứng với từng số thứ tự trên cầu như ảnh.

Cầu Ponte Sisto in hình dưới dòng sông Tiber, tạo nên một hình ảnh có tính đối xứng trục.

a) Hãy chỉ ra trục đối xứng của hình ảnh đó.
b) Có thể đếm được bao nhiêu hình bóng điện dưới sông? Mỗi hình đó là ảnh dưới sông của bóng điện nào trên cầu?
Phương pháp giải:
Có một đường thẳng chia hình thành hai phần bằng nhau mà nếu “gấp” hình theo đường thẳng thì hai phần đó “chồng khít” lên nhau. Được gọi là hình có trục đối xứng và đường thẳng là trục đối xứng của nó.
Lời giải chi tiết:
a) Đường thẳng giao bởi cầu và mặt nước trên dòng sông là trục đối xứng của hình ảnh đó (đường màu xanh trong hình vẽ).

b) Có thể đếm được 5 bóng điện dưới dòng sông. Mỗi hình đó là ảnh dưới sông của bóng điện tương ứng với từng số thứ tự trên cầu như ảnh.

Xét mặt phẳng tọa độ Oxy (H.1.15). Trong các khẳng định sau, chọn các khẳng định đúng.
a) Phép đối xứng trục Ox biến mỗi điểm \(M\left( {x;{\rm{ }}y} \right)\)thành điểm có tọa độ \(\left( {x;{\rm{ }}-{\rm{ }}y} \right).\)
b) Phép đối xứng trục Oy biến mỗi điểm \(M\left( {x;{\rm{ }}y} \right)\)thành điểm có tọa độ \(\left( {-{\rm{ }}x;{\rm{ }}y} \right).\)
c) Phép đối xứng trục Ox biến A(1; 2) thành điểm \(A'\left( {-{\rm{ }}1;{\rm{ }}-{\rm{ }}2} \right).\)

Phương pháp giải:
Nếu thì biểu thức tọa độ \(\left\{ \begin{array}{l}{x_{M'}} = {x_M}\\{y_{M'}} = - {y_M}\end{array} \right.\)
Nếu thì biểu thức tọa độ \(\left\{ \begin{array}{l}{x_{M'}} = - {x_M}\\{y_{M'}} = {y_M}\end{array} \right.\)
Lời giải chi tiết:

Từ hình vẽ ta thấy:
+) Phép đối xứng trục Ox biến mỗi điểm M(x; y) thành điểm M1(x; – y).
+) Phép đối xứng trục Oy biến mỗi điểm M(x; y) thành điểm M2(– x; y).
Do đó, phép đối xứng trục Ox biến điểm A(1; 2) thành A'(1; – 2).
Vậy các khẳng định a), b) đúng và khẳng định c) sai.
Chuyên đề học tập Toán 11 - Kết nối tri thức là một phần quan trọng trong chương trình học Toán lớp 11. Mục 1 trang 12, 13 tập trung vào việc ôn tập và hệ thống hóa kiến thức về hàm số bậc hai, bao gồm các khái niệm, tính chất, và phương pháp giải các bài toán liên quan. Việc nắm vững kiến thức này là nền tảng để học tốt các chuyên đề tiếp theo.
Dưới đây là hướng dẫn giải chi tiết một số bài tập tiêu biểu trong Mục 1 trang 12, 13 Chuyên đề học tập Toán 11 - Kết nối tri thức:
Lời giải: Hàm số y = 2x2 - 5x + 3 có dạng y = ax2 + bx + c. So sánh với dạng tổng quát, ta có a = 2, b = -5, c = 3.
Lời giải: Hoành độ đỉnh của parabol là x = -b / 2a = -(-4) / (2 * 1) = 2. Tung độ đỉnh là y = (2)2 - 4 * 2 + 3 = -1. Vậy đỉnh của parabol là (2, -1).
Lời giải: Phương trình x2 - 5x + 6 = 0 có a = 1, b = -5, c = 6. Tính delta: Δ = b2 - 4ac = (-5)2 - 4 * 1 * 6 = 1. Vì Δ > 0, phương trình có hai nghiệm phân biệt:
Vậy phương trình có hai nghiệm là x1 = 3 và x2 = 2.
Tusach.vn cam kết cung cấp những tài liệu học tập chất lượng, chính xác và dễ hiểu. Chúng tôi luôn cập nhật những thông tin mới nhất và hỗ trợ học sinh học tập hiệu quả. Hãy truy cập Tusach.vn để khám phá thêm nhiều tài liệu học tập hữu ích khác!
| Chủ đề | Nội dung |
|---|---|
| Hàm số bậc hai | Định nghĩa, dạng tổng quát, đồ thị |
| Bài tập ứng dụng | Giải phương trình, tìm đỉnh, ứng dụng thực tế |
| Tusach.vn - Nguồn tài liệu học tập uy tín | |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập