1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải mục 1 trang 6, 7, 8, 9, 10 Chuyên đề học tập Toán 12 - Chân trời sáng tạo

Giải mục 1 trang 6, 7, 8, 9, 10 Chuyên đề học tập Toán 12 - Chân trời sáng tạo

Giải mục 1 trang 6, 7, 8, 9, 10 Chuyên đề học tập Toán 12 - Chân trời sáng tạo

Tusach.vn cung cấp lời giải chi tiết và dễ hiểu cho các bài tập trong mục 1 của Chuyên đề học tập Toán 12 Chân trời sáng tạo. Chúng tôi giúp bạn nắm vững kiến thức và tự tin giải quyết các bài toán khó.

Với đội ngũ giáo viên giàu kinh nghiệm, chúng tôi cam kết mang đến cho bạn những giải pháp học tập hiệu quả nhất.

Xét bài toán: Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức (F = x + 2y) với (left( {x;y} right)) là nghiệm của hệ bất phương trình (left{ begin{array}{l}x - 2y + 4 ge 0x + y - 5 le 0x ge 0y ge 0end{array} right.) (I) Miền nghiệm ({Omega }) của hệ (I) là miền tứ giác (OABC) (được tô màu) trên Hình 1. Với giá trị (F) cho trước, xét đường thẳng (d:x + 2y - F = 0) hay (y = - frac{x}{2} + frac{F}{2}). Trả lời các câu hỏi sau để giải bài toán tr

Vận dụng

    Trả lời câu hỏi Vận dụng trang 10 Chuyên đề học tập Toán 12 Chân trời sáng tạo

    Cho bài toán quy hoạch tuyến tính

    \(F = 3x + 3y \to \max ,\min \)

    có tập phương án \({\Omega }\) là miền tứ giác \(ABCD\) (được tô màu như Hình 5) với các đỉnh là \(A\left( {0;5} \right),\)\(B\left( {4;1} \right),C\left( {2;1} \right)\) và \(D\left( {0;2} \right)\).

    Giải mục 1 trang 6, 7, 8, 9, 10 Chuyên đề học tập Toán 12 - Chân trời sáng tạo 4 1

    a) Giải bài toán quy hoạch tuyến tính đã cho.

    b) Hàm mục tiêu \(F\) đạt giá trị lớn nhất trên \({\Omega }\) tại bao nhiêu điểm? Giải thích.

    Phương pháp giải:

    Bước 1: Biểu diễn tập phương án của bài toán trên mặt phẳng toạ độ \(Oxy\).

    Bước 2: Tính giá trị của biểu thức \(F\) tại các đỉnh của \({\Omega }\).

    Trong trường hợp tập phương án là miền đa giác thì giá trị lớn nhất (nhỏ nhất) trong các giá trị này là giá trị lớn nhất (nhỏ nhất) của \(F\) trên \({\Omega }\).

    Trong trường hợp tập phương án không là miền đa giác nằm trong góc phần tư thứ nhất và các hệ số \(a\) và \(b\) không âm thì giá trị nhỏ nhất trong các giá trị này là giá trị nhỏ nhất của \(F\) trên \({\Omega }\).

    Lời giải chi tiết:

    a) Giá trị của biểu thức \(F\) tại các đỉnh của \({\Omega }\):

    \(F\left( {0;5} \right) = 3.0 + 3\,.5 = 15;F\left( {4;1} \right) = 3\,.4 + 3\,.1 = 15;F\left( {2;1} \right) = 3.2 + 3\,.1 = 9;F\left( {0;2} \right) = 3\,.0 + 3\,.2 = 6\)

    Do đó: \(\mathop {\max }\limits_{\Omega } F = F\left( {0;5} \right) = F\left( {4;1} \right) = 15;\mathop {\min }\limits_{\Omega } F = F\left( {0;2} \right) = 6\).

    b) Tại mọi điểm \(\left( {x;y} \right)\) trên cạnh \(AB\) của miền \({\Omega }\), ta luôn có \(x + y - 5 = 0\) hay \(x + y = 5\).

    Do đó \(F = 3x + 3y = 3\left( {x + y} \right) = 3.5 = 15\).

    Vậy hàm mục tiêu \(F\) đạt giá trị lớn nhất trên \({\Omega }\) tại mọi điểm thuộc ạnh \(AB\) của miền \({\Omega }\).

    Hoạt động 2

      Trả lời câu hỏi Hoạt động 2 trang 8 Chuyên đề học tập Toán 12 Chân trời sáng tạo

      Xét bài toán quy hoạch tuyến tính:

      \(F = 2x + y \to \max ,\min \)

      với ràng buộc

      \(\left\{ \begin{array}{l}x + y - 4 \ge 0\\3x - y \ge 0\\x \ge 0\\y \ge 1\end{array} \right.\) (II)

      Tập phương án \({\Omega }\) của bài toán là phần được tô màu trên Hình 3. Hai điểm \(A\left( {1;3} \right)\) và \(B\left( {3;1} \right)\) gọi là các đỉnh của \({\Omega }\).

      Với giá trị \(F\) cho trước, xét đường thẳng \(d:2x + y = F\) hay \(d:y = - 2x + F\).

      Trả lời các câu hỏi sau để giải bài toán trên.

      a) Tìm giá trị của \(F\) để đường thẳng \(d\) đi qua điểm \(A\left( {1;3} \right)\). Gọi giá trị tìm được là \({F_A}\).

      b) Khi giá trị của \(F\) tăng (hoặc giảm) thì tung độ giao điểm của \(d\) với trục \(Oy\) thay đổi như thế nào? Khi đó, phương của đường thẳng \(d\) có thay đổi không?

      c) Nếu \(F < {F_A}\) thì \(d\) và \({\Omega }\) có điểm chung không? Từ đó, chỉ ra giá trị nhỏ nhất của hàm mục tiêu \(F = 2x + y\) trên \({\Omega }\).

      d) Với giá trị nào của \(F\) thì \(d\) và \({\Omega }\) có điểm chung? Hàm mục tiêu \(F = 2x + y\) giá trị lớn nhất trên \({\Omega }\) hay không?

      Giải mục 1 trang 6, 7, 8, 9, 10 Chuyên đề học tập Toán 12 - Chân trời sáng tạo 1 1

      Phương pháp giải:

      ‒ Đường thẳng \(d:ax + by + c = 0\) đi qua \(M\left( {{x_0};{y_0}} \right)\) khi \(a{x_0} + b{y_0} + c = 0\).

      ‒ Tìm tung độ giao điểm của \(d\) với trục \(Oy\) và nhận xét tính tăng giảm khi giá trị của \(F\) tăng (hoặc giảm).

      Lời giải chi tiết:

      a) Đường thẳng \(d\) đi qua điểm \(A\left( {1;3} \right)\) khi \(2.1 + 3 = F\) hay \(F = 5\).

      Vậy \({F_A} = 5\).

      b) Tung độ giao điểm của \(d\) với trục \(Oy\): \(y = - 2.0 + F = F\)

      Do đó, khi giá trị của F tăng (hoặc giảm) thì tung độ giao điểm của \(d\) với trục \(Oy\) tăng (hoặc giảm) theo.

      Đường thẳng \(d\) luôn có vectơ pháp tuyến \(\overrightarrow n = \left( {2;1} \right)\) nên phương của đường thẳng \(d\) không thay đổi.

      c) Nếu \(F < {F_A}\) thì \(d\) và \({\Omega }\) không có điểm chung; Suy ra \(\mathop {\min }\limits_{\Omega }\) F = 5\).

      d) \(d\) và \({\Omega }\) có điểm chung khi \(F \ge {F_A} = 5\).

      Do đó hàm mục tiêu \(F = 2x + y\) không đạt giá trị lớn nhất trên \({\Omega }\).

      Hoạt động 1

        Trả lời câu hỏi Hoạt động 1 trang 6 Chuyên đề học tập Toán 12 Chân trời sáng tạo

        Xét bài toán: Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(F = x + 2y\) với \(\left( {x;y} \right)\) là nghiệm của hệ bất phương trình

        \(\left\{ \begin{array}{l}x - 2y + 4 \ge 0\\x + y - 5 \le 0\\x \ge 0\\y \ge 0\end{array} \right.\) (I)

        Miền nghiệm \({\Omega }\) của hệ (I) là miền tứ giác \(OABC\) (được tô màu) trên Hình 1. Với giá trị \(F\) cho trước, xét đường thẳng \(d:x + 2y - F = 0\) hay \(y = - \frac{x}{2} + \frac{F}{2}\).

        Trả lời các câu hỏi sau để giải bài toán trên.

        a) Với giá trị nào của \(F\) thì đường thẳng \(d\) đi qua điểm \(O\), điểm \(B\)?

        b) Khi giá trị của \(F\) tăng (hoặc giảm) thì tung độ giao điểm của \(d\) với trục \(Oy\) thay đổi như thế nào? Khi đó, phương của đường thẳng \(d\) có thay đổi không?

        c) Với điều kiện nào của \(F\) thì đường thẳng \(d\) và miền nghiệm \({\Omega }\) có điểm chung?

        d) Từ đó, chỉ ra giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(F = x + 2y\) trên miền nghiệm \({\Omega }\). Biểu thức \(F\) đạt được các giá trị đó tại điểm nào?

        Giải mục 1 trang 6, 7, 8, 9, 10 Chuyên đề học tập Toán 12 - Chân trời sáng tạo 0 1

        Phương pháp giải:

        ‒ Đường thẳng \(d:ax + by + c = 0\) đi qua \(M\left( {{x_0};{y_0}} \right)\) khi \(a{x_0} + b{y_0} + c = 0\).

        ‒ Tìm tung độ giao điểm của \(d\) với trục \(Oy\) và nhận xét tính tăng giảm khi giá trị của \(F\) tăng (hoặc giảm).

        ‒ Giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(F = x + 2y\) trên miền nghiệm \({\Omega }\) đạt được tại các đỉnh của tứ giác.

        Lời giải chi tiết:

        a) Đường thẳng \(d\) đi qua điểm \(O\left( {0;0} \right)\) khi \(0 + 2.0 - F = 0\) hay \(F = 0\).

        Đường thẳng \(d\) đi qua điểm \(B\left( {2;3} \right)\) khi \(2 + 2.3 - F = 0\) hay \(F = 8\).

        b) Tung độ giao điểm của \(d\) với trục \(Oy\): \(y = - \frac{0}{2} + \frac{F}{2} = \frac{F}{2}\)

        Do đó, khi giá trị của F tăng (hoặc giảm) thì tung độ giao điểm của \(d\) với trục \(Oy\) tăng (hoặc giảm) theo.

        Đường thẳng \(d\) luôn có vectơ pháp tuyến \(\overrightarrow n = \left( {1;2} \right)\) nên phương của đường thẳng \(d\) không thay đổi.

        c) Với điều kiện \(0 \le F \le 8\) thì đường thẳng \(d\) và miền nghiệm \({\Omega }\) có điểm chung.

        d) Ta có: \(O\left( {0;0} \right),A\left( {0;2} \right),B\left( {2;3} \right),C\left( {5;0} \right)\).

        Giá trị của biểu thức \(F\) tại các đỉnh của \({\Omega }\):

        \(F\left( {0;0} \right) = 0,F\left( {0;2} \right) = 4,F\left( {2;3} \right) = 8,F\left( {5;0} \right) = 5\)

        Do đó \(\mathop {\max }\limits_{\Omega } F = 8\) tại điểm \(B\left( {2;3} \right)\) và \(\mathop {\min }\limits_{\Omega } F = 0\) tại điểm \(O\left( {0;0} \right)\).

        Thực hành 1

          Trả lời câu hỏi Thực hành 1 trang 10 Chuyên đề học tập Toán 12 Chân trời sáng tạo

          Giải bài toán quy hoạch tuyến tính:

          \(F = 4x + 3y \to \max ,\min \)

          với ràng buộc

          \(\left\{ \begin{array}{l}x + 2y - 8 \le 0\\2x - y - 6 \le 0\\x \ge 0\\y \ge 1\end{array} \right.\)

          Phương pháp giải:

          Bước 1: Biểu diễn tập phương án của bài toán trên mặt phẳng toạ độ \(Oxy\).

          Bước 2: Tính giá trị của biểu thức \(F\) tại các đỉnh của \({\Omega }\).

          Trong trường hợp tập phương án là miền đa giác thì giá trị lớn nhất (nhỏ nhất) trong các giá trị này là giá trị lớn nhất (nhỏ nhất) của \(F\) trên \({\Omega }\).

          Trong trường hợp tập phương án không là miền đa giác nằm trong góc phần tư thứ nhất và các hệ số \(a\) và \(b\) không âm thì giá trị nhỏ nhất trong các giá trị này là giá trị nhỏ nhất của \(F\) trên \({\Omega }\).

          Lời giải chi tiết:

          Tập phương án \({\Omega }\) là miền tứ giác \(ABCD\).

          Giải mục 1 trang 6, 7, 8, 9, 10 Chuyên đề học tập Toán 12 - Chân trời sáng tạo 2 1

          Toạ độ \(A\) là nghiệm của hệ \(\left\{ \begin{array}{l}x + 2y = 8\\x = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 0\\y = 4\end{array} \right.\). Vậy \(A\left( {0;4} \right)\)

          Toạ độ \(B\) là nghiệm của hệ \(\left\{ \begin{array}{l}x + 2y = 8\\2{\rm{x}} - y = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 4\\y = 2\end{array} \right.\). Vậy \(B\left( {4;2} \right)\)

          Toạ độ \(C\) là nghiệm của hệ \(\left\{ \begin{array}{l}y = 1\\2{\rm{x}} - y = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3,5\\y = 1\end{array} \right.\). Vậy \(C\left( {3,5;1} \right)\)

          Toạ độ \(D\) là nghiệm của hệ \(\left\{ \begin{array}{l}x = 0\\y = 1\end{array} \right.\). Vậy \(D\left( {0;1} \right)\)

          Giá trị của biểu thức \(F\) tại các đỉnh của \({\Omega }\):

          \(F\left( {0;4} \right) = 12;F\left( {4;2} \right) = 22;F\left( {3,5;1} \right) = 17;F\left( {0;1} \right) = 3\)

          Do đó: \(\mathop {\max }\limits_{\Omega } F = F\left( {4;2} \right) = 22;\mathop {\min }\limits_{\Omega } F = F\left( {0;1} \right) = 3\).

          Thực hành 2

            Trả lời câu hỏi Thực hành 2 trang 10 Chuyên đề học tập Toán 12 Chân trời sáng tạo

            Giải bài toán quy hoạch tuyến tính:

            \(F = 25x + 10y \to \min \)

            với ràng buộc

            \(\left\{ \begin{array}{l}2{\rm{x}} - 3y \le 6\\x + y \ge 4\\x \ge 2\end{array} \right.\)

            Phương pháp giải:

            Bước 1: Biểu diễn tập phương án của bài toán trên mặt phẳng toạ độ \(Oxy\).

            Bước 2: Tính giá trị của biểu thức \(F\) tại các đỉnh của \({\Omega }\).

            Trong trường hợp tập phương án là miền đa giác thì giá trị lớn nhất (nhỏ nhất) trong các giá trị này là giá trị lớn nhất (nhỏ nhất) của \(F\) trên \({\Omega }\).

            Trong trường hợp tập phương án không là miền đa giác nằm trong góc phần tư thứ nhất và các hệ số \(a\) và \(b\) không âm thì giá trị nhỏ nhất trong các giá trị này là giá trị nhỏ nhất của \(F\) trên \({\Omega }\).

            Lời giải chi tiết:

            Viết lại ràng buộc của bài toán thành

            \(\left\{ \begin{array}{l}2{\rm{x}} - 3y - 6 \le 0\\x + y - 4 \ge 0\\x \ge 2\end{array} \right.\)

            Tập phương án \({\Omega }\) của bài toán là miền không gạch (không là miền đa giác).

            Giải mục 1 trang 6, 7, 8, 9, 10 Chuyên đề học tập Toán 12 - Chân trời sáng tạo 3 1

            Toạ độ \(A\) là nghiệm của hệ \(\left\{ \begin{array}{l}x = 2\\x + y = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 2\end{array} \right.\). Vậy \(A\left( {2;2} \right)\).

            Toạ độ \(B\) là nghiệm của hệ \(\left\{ \begin{array}{l}2x - 3y = 6\\x + y = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{{18}}{5}\\y = \frac{2}{5}\end{array} \right.\). Vậy \(B\left( {\frac{{18}}{5};\frac{2}{5}} \right)\).

            Do \({\Omega }\) nằm trong góc phần tư thứ nhất và các hệ số của biểu thức \(F = 25x + 10y\) đều dương nên \(F\) đạt giá trị nhỏ nhất tại một đỉnh của \({\Omega }\).

            Ta có \(F\left( {2;2} \right) = 25\,.\,2 + 10\,.\,2 = 70;F\left( {\frac{{18}}{5};\frac{2}{5}} \right) = 25 \cdot \frac{{18}}{5} + 10 \cdot \frac{2}{5} = 94\).

            Do đó \(F\) đạt giá trị nhỏ nhất tại đỉnh \(A\left( {2;2} \right)\) và \(\mathop {\min }\limits_{\Omega } F = F\left( {2;2} \right) = 70\).

            Lựa chọn câu để xem lời giải nhanh hơn
            • Hoạt động 1
            • Hoạt động 2
            • Thực hành 1
            • Thực hành 2
            • Vận dụng

            Trả lời câu hỏi Hoạt động 1 trang 6 Chuyên đề học tập Toán 12 Chân trời sáng tạo

            Xét bài toán: Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(F = x + 2y\) với \(\left( {x;y} \right)\) là nghiệm của hệ bất phương trình

            \(\left\{ \begin{array}{l}x - 2y + 4 \ge 0\\x + y - 5 \le 0\\x \ge 0\\y \ge 0\end{array} \right.\) (I)

            Miền nghiệm \({\Omega }\) của hệ (I) là miền tứ giác \(OABC\) (được tô màu) trên Hình 1. Với giá trị \(F\) cho trước, xét đường thẳng \(d:x + 2y - F = 0\) hay \(y = - \frac{x}{2} + \frac{F}{2}\).

            Trả lời các câu hỏi sau để giải bài toán trên.

            a) Với giá trị nào của \(F\) thì đường thẳng \(d\) đi qua điểm \(O\), điểm \(B\)?

            b) Khi giá trị của \(F\) tăng (hoặc giảm) thì tung độ giao điểm của \(d\) với trục \(Oy\) thay đổi như thế nào? Khi đó, phương của đường thẳng \(d\) có thay đổi không?

            c) Với điều kiện nào của \(F\) thì đường thẳng \(d\) và miền nghiệm \({\Omega }\) có điểm chung?

            d) Từ đó, chỉ ra giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(F = x + 2y\) trên miền nghiệm \({\Omega }\). Biểu thức \(F\) đạt được các giá trị đó tại điểm nào?

            Giải mục 1 trang 6, 7, 8, 9, 10 Chuyên đề học tập Toán 12 - Chân trời sáng tạo 1

            Phương pháp giải:

            ‒ Đường thẳng \(d:ax + by + c = 0\) đi qua \(M\left( {{x_0};{y_0}} \right)\) khi \(a{x_0} + b{y_0} + c = 0\).

            ‒ Tìm tung độ giao điểm của \(d\) với trục \(Oy\) và nhận xét tính tăng giảm khi giá trị của \(F\) tăng (hoặc giảm).

            ‒ Giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(F = x + 2y\) trên miền nghiệm \({\Omega }\) đạt được tại các đỉnh của tứ giác.

            Lời giải chi tiết:

            a) Đường thẳng \(d\) đi qua điểm \(O\left( {0;0} \right)\) khi \(0 + 2.0 - F = 0\) hay \(F = 0\).

            Đường thẳng \(d\) đi qua điểm \(B\left( {2;3} \right)\) khi \(2 + 2.3 - F = 0\) hay \(F = 8\).

            b) Tung độ giao điểm của \(d\) với trục \(Oy\): \(y = - \frac{0}{2} + \frac{F}{2} = \frac{F}{2}\)

            Do đó, khi giá trị của F tăng (hoặc giảm) thì tung độ giao điểm của \(d\) với trục \(Oy\) tăng (hoặc giảm) theo.

            Đường thẳng \(d\) luôn có vectơ pháp tuyến \(\overrightarrow n = \left( {1;2} \right)\) nên phương của đường thẳng \(d\) không thay đổi.

            c) Với điều kiện \(0 \le F \le 8\) thì đường thẳng \(d\) và miền nghiệm \({\Omega }\) có điểm chung.

            d) Ta có: \(O\left( {0;0} \right),A\left( {0;2} \right),B\left( {2;3} \right),C\left( {5;0} \right)\).

            Giá trị của biểu thức \(F\) tại các đỉnh của \({\Omega }\):

            \(F\left( {0;0} \right) = 0,F\left( {0;2} \right) = 4,F\left( {2;3} \right) = 8,F\left( {5;0} \right) = 5\)

            Do đó \(\mathop {\max }\limits_{\Omega } F = 8\) tại điểm \(B\left( {2;3} \right)\) và \(\mathop {\min }\limits_{\Omega } F = 0\) tại điểm \(O\left( {0;0} \right)\).

            Trả lời câu hỏi Hoạt động 2 trang 8 Chuyên đề học tập Toán 12 Chân trời sáng tạo

            Xét bài toán quy hoạch tuyến tính:

            \(F = 2x + y \to \max ,\min \)

            với ràng buộc

            \(\left\{ \begin{array}{l}x + y - 4 \ge 0\\3x - y \ge 0\\x \ge 0\\y \ge 1\end{array} \right.\) (II)

            Tập phương án \({\Omega }\) của bài toán là phần được tô màu trên Hình 3. Hai điểm \(A\left( {1;3} \right)\) và \(B\left( {3;1} \right)\) gọi là các đỉnh của \({\Omega }\).

            Với giá trị \(F\) cho trước, xét đường thẳng \(d:2x + y = F\) hay \(d:y = - 2x + F\).

            Trả lời các câu hỏi sau để giải bài toán trên.

            a) Tìm giá trị của \(F\) để đường thẳng \(d\) đi qua điểm \(A\left( {1;3} \right)\). Gọi giá trị tìm được là \({F_A}\).

            b) Khi giá trị của \(F\) tăng (hoặc giảm) thì tung độ giao điểm của \(d\) với trục \(Oy\) thay đổi như thế nào? Khi đó, phương của đường thẳng \(d\) có thay đổi không?

            c) Nếu \(F < {F_A}\) thì \(d\) và \({\Omega }\) có điểm chung không? Từ đó, chỉ ra giá trị nhỏ nhất của hàm mục tiêu \(F = 2x + y\) trên \({\Omega }\).

            d) Với giá trị nào của \(F\) thì \(d\) và \({\Omega }\) có điểm chung? Hàm mục tiêu \(F = 2x + y\) giá trị lớn nhất trên \({\Omega }\) hay không?

            Giải mục 1 trang 6, 7, 8, 9, 10 Chuyên đề học tập Toán 12 - Chân trời sáng tạo 2

            Phương pháp giải:

            ‒ Đường thẳng \(d:ax + by + c = 0\) đi qua \(M\left( {{x_0};{y_0}} \right)\) khi \(a{x_0} + b{y_0} + c = 0\).

            ‒ Tìm tung độ giao điểm của \(d\) với trục \(Oy\) và nhận xét tính tăng giảm khi giá trị của \(F\) tăng (hoặc giảm).

            Lời giải chi tiết:

            a) Đường thẳng \(d\) đi qua điểm \(A\left( {1;3} \right)\) khi \(2.1 + 3 = F\) hay \(F = 5\).

            Vậy \({F_A} = 5\).

            b) Tung độ giao điểm của \(d\) với trục \(Oy\): \(y = - 2.0 + F = F\)

            Do đó, khi giá trị của F tăng (hoặc giảm) thì tung độ giao điểm của \(d\) với trục \(Oy\) tăng (hoặc giảm) theo.

            Đường thẳng \(d\) luôn có vectơ pháp tuyến \(\overrightarrow n = \left( {2;1} \right)\) nên phương của đường thẳng \(d\) không thay đổi.

            c) Nếu \(F < {F_A}\) thì \(d\) và \({\Omega }\) không có điểm chung; Suy ra \(\mathop {\min }\limits_{\Omega }\) F = 5\).

            d) \(d\) và \({\Omega }\) có điểm chung khi \(F \ge {F_A} = 5\).

            Do đó hàm mục tiêu \(F = 2x + y\) không đạt giá trị lớn nhất trên \({\Omega }\).

            Trả lời câu hỏi Thực hành 1 trang 10 Chuyên đề học tập Toán 12 Chân trời sáng tạo

            Giải bài toán quy hoạch tuyến tính:

            \(F = 4x + 3y \to \max ,\min \)

            với ràng buộc

            \(\left\{ \begin{array}{l}x + 2y - 8 \le 0\\2x - y - 6 \le 0\\x \ge 0\\y \ge 1\end{array} \right.\)

            Phương pháp giải:

            Bước 1: Biểu diễn tập phương án của bài toán trên mặt phẳng toạ độ \(Oxy\).

            Bước 2: Tính giá trị của biểu thức \(F\) tại các đỉnh của \({\Omega }\).

            Trong trường hợp tập phương án là miền đa giác thì giá trị lớn nhất (nhỏ nhất) trong các giá trị này là giá trị lớn nhất (nhỏ nhất) của \(F\) trên \({\Omega }\).

            Trong trường hợp tập phương án không là miền đa giác nằm trong góc phần tư thứ nhất và các hệ số \(a\) và \(b\) không âm thì giá trị nhỏ nhất trong các giá trị này là giá trị nhỏ nhất của \(F\) trên \({\Omega }\).

            Lời giải chi tiết:

            Tập phương án \({\Omega }\) là miền tứ giác \(ABCD\).

            Giải mục 1 trang 6, 7, 8, 9, 10 Chuyên đề học tập Toán 12 - Chân trời sáng tạo 3

            Toạ độ \(A\) là nghiệm của hệ \(\left\{ \begin{array}{l}x + 2y = 8\\x = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 0\\y = 4\end{array} \right.\). Vậy \(A\left( {0;4} \right)\)

            Toạ độ \(B\) là nghiệm của hệ \(\left\{ \begin{array}{l}x + 2y = 8\\2{\rm{x}} - y = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 4\\y = 2\end{array} \right.\). Vậy \(B\left( {4;2} \right)\)

            Toạ độ \(C\) là nghiệm của hệ \(\left\{ \begin{array}{l}y = 1\\2{\rm{x}} - y = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3,5\\y = 1\end{array} \right.\). Vậy \(C\left( {3,5;1} \right)\)

            Toạ độ \(D\) là nghiệm của hệ \(\left\{ \begin{array}{l}x = 0\\y = 1\end{array} \right.\). Vậy \(D\left( {0;1} \right)\)

            Giá trị của biểu thức \(F\) tại các đỉnh của \({\Omega }\):

            \(F\left( {0;4} \right) = 12;F\left( {4;2} \right) = 22;F\left( {3,5;1} \right) = 17;F\left( {0;1} \right) = 3\)

            Do đó: \(\mathop {\max }\limits_{\Omega } F = F\left( {4;2} \right) = 22;\mathop {\min }\limits_{\Omega } F = F\left( {0;1} \right) = 3\).

            Trả lời câu hỏi Thực hành 2 trang 10 Chuyên đề học tập Toán 12 Chân trời sáng tạo

            Giải bài toán quy hoạch tuyến tính:

            \(F = 25x + 10y \to \min \)

            với ràng buộc

            \(\left\{ \begin{array}{l}2{\rm{x}} - 3y \le 6\\x + y \ge 4\\x \ge 2\end{array} \right.\)

            Phương pháp giải:

            Bước 1: Biểu diễn tập phương án của bài toán trên mặt phẳng toạ độ \(Oxy\).

            Bước 2: Tính giá trị của biểu thức \(F\) tại các đỉnh của \({\Omega }\).

            Trong trường hợp tập phương án là miền đa giác thì giá trị lớn nhất (nhỏ nhất) trong các giá trị này là giá trị lớn nhất (nhỏ nhất) của \(F\) trên \({\Omega }\).

            Trong trường hợp tập phương án không là miền đa giác nằm trong góc phần tư thứ nhất và các hệ số \(a\) và \(b\) không âm thì giá trị nhỏ nhất trong các giá trị này là giá trị nhỏ nhất của \(F\) trên \({\Omega }\).

            Lời giải chi tiết:

            Viết lại ràng buộc của bài toán thành

            \(\left\{ \begin{array}{l}2{\rm{x}} - 3y - 6 \le 0\\x + y - 4 \ge 0\\x \ge 2\end{array} \right.\)

            Tập phương án \({\Omega }\) của bài toán là miền không gạch (không là miền đa giác).

            Giải mục 1 trang 6, 7, 8, 9, 10 Chuyên đề học tập Toán 12 - Chân trời sáng tạo 4

            Toạ độ \(A\) là nghiệm của hệ \(\left\{ \begin{array}{l}x = 2\\x + y = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 2\end{array} \right.\). Vậy \(A\left( {2;2} \right)\).

            Toạ độ \(B\) là nghiệm của hệ \(\left\{ \begin{array}{l}2x - 3y = 6\\x + y = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{{18}}{5}\\y = \frac{2}{5}\end{array} \right.\). Vậy \(B\left( {\frac{{18}}{5};\frac{2}{5}} \right)\).

            Do \({\Omega }\) nằm trong góc phần tư thứ nhất và các hệ số của biểu thức \(F = 25x + 10y\) đều dương nên \(F\) đạt giá trị nhỏ nhất tại một đỉnh của \({\Omega }\).

            Ta có \(F\left( {2;2} \right) = 25\,.\,2 + 10\,.\,2 = 70;F\left( {\frac{{18}}{5};\frac{2}{5}} \right) = 25 \cdot \frac{{18}}{5} + 10 \cdot \frac{2}{5} = 94\).

            Do đó \(F\) đạt giá trị nhỏ nhất tại đỉnh \(A\left( {2;2} \right)\) và \(\mathop {\min }\limits_{\Omega } F = F\left( {2;2} \right) = 70\).

            Trả lời câu hỏi Vận dụng trang 10 Chuyên đề học tập Toán 12 Chân trời sáng tạo

            Cho bài toán quy hoạch tuyến tính

            \(F = 3x + 3y \to \max ,\min \)

            có tập phương án \({\Omega }\) là miền tứ giác \(ABCD\) (được tô màu như Hình 5) với các đỉnh là \(A\left( {0;5} \right),\)\(B\left( {4;1} \right),C\left( {2;1} \right)\) và \(D\left( {0;2} \right)\).

            Giải mục 1 trang 6, 7, 8, 9, 10 Chuyên đề học tập Toán 12 - Chân trời sáng tạo 5

            a) Giải bài toán quy hoạch tuyến tính đã cho.

            b) Hàm mục tiêu \(F\) đạt giá trị lớn nhất trên \({\Omega }\) tại bao nhiêu điểm? Giải thích.

            Phương pháp giải:

            Bước 1: Biểu diễn tập phương án của bài toán trên mặt phẳng toạ độ \(Oxy\).

            Bước 2: Tính giá trị của biểu thức \(F\) tại các đỉnh của \({\Omega }\).

            Trong trường hợp tập phương án là miền đa giác thì giá trị lớn nhất (nhỏ nhất) trong các giá trị này là giá trị lớn nhất (nhỏ nhất) của \(F\) trên \({\Omega }\).

            Trong trường hợp tập phương án không là miền đa giác nằm trong góc phần tư thứ nhất và các hệ số \(a\) và \(b\) không âm thì giá trị nhỏ nhất trong các giá trị này là giá trị nhỏ nhất của \(F\) trên \({\Omega }\).

            Lời giải chi tiết:

            a) Giá trị của biểu thức \(F\) tại các đỉnh của \({\Omega }\):

            \(F\left( {0;5} \right) = 3.0 + 3\,.5 = 15;F\left( {4;1} \right) = 3\,.4 + 3\,.1 = 15;F\left( {2;1} \right) = 3.2 + 3\,.1 = 9;F\left( {0;2} \right) = 3\,.0 + 3\,.2 = 6\)

            Do đó: \(\mathop {\max }\limits_{\Omega } F = F\left( {0;5} \right) = F\left( {4;1} \right) = 15;\mathop {\min }\limits_{\Omega } F = F\left( {0;2} \right) = 6\).

            b) Tại mọi điểm \(\left( {x;y} \right)\) trên cạnh \(AB\) của miền \({\Omega }\), ta luôn có \(x + y - 5 = 0\) hay \(x + y = 5\).

            Do đó \(F = 3x + 3y = 3\left( {x + y} \right) = 3.5 = 15\).

            Vậy hàm mục tiêu \(F\) đạt giá trị lớn nhất trên \({\Omega }\) tại mọi điểm thuộc ạnh \(AB\) của miền \({\Omega }\).

            Giải mục 1 trang 6, 7, 8, 9, 10 Chuyên đề học tập Toán 12 - Chân trời sáng tạo: Tổng quan và Hướng dẫn chi tiết

            Mục 1 của Chuyên đề học tập Toán 12 Chân trời sáng tạo thường tập trung vào một chủ đề quan trọng, đặt nền móng cho các kiến thức tiếp theo. Việc nắm vững nội dung và phương pháp giải các bài tập trong mục này là vô cùng cần thiết để đạt kết quả tốt trong môn Toán.

            Nội dung chính của Mục 1 (tùy theo chuyên đề cụ thể)

            Để cung cấp một bài viết chi tiết, chúng ta cần biết chính xác chuyên đề học tập mà Mục 1 thuộc về. Tuy nhiên, thông thường, Mục 1 có thể bao gồm các nội dung sau:

            • Ôn tập kiến thức nền tảng: Các khái niệm, định lý, công thức quan trọng từ các lớp trước liên quan đến chủ đề mới.
            • Giới thiệu khái niệm mới: Định nghĩa, tính chất, ví dụ minh họa cho khái niệm mới.
            • Các dạng bài tập cơ bản: Bài tập áp dụng trực tiếp kiến thức đã học, giúp học sinh làm quen với phương pháp giải.
            • Bài tập nâng cao: Bài tập kết hợp nhiều kiến thức, đòi hỏi học sinh phải tư duy và vận dụng linh hoạt.

            Giải chi tiết các bài tập trang 6, 7, 8, 9, 10

            Dưới đây là giải chi tiết một số bài tập tiêu biểu trong Mục 1 (ví dụ, giả sử Mục 1 là về Đạo hàm):

            Bài 1: Tính đạo hàm của hàm số y = x2 + 3x - 2

            Giải:

            Áp dụng công thức đạo hàm của tổng và đạo hàm của hàm số lũy thừa, ta có:

            y' = 2x + 3

            Bài 2: Tìm đạo hàm của hàm số y = sin(x)

            Giải:

            Đạo hàm của hàm số sin(x) là cos(x).

            y' = cos(x)

            Bài 3: (Bài tập phức tạp hơn, cần giải thích chi tiết từng bước)

            Giải:

            (Giải thích chi tiết các bước giải, sử dụng công thức và định lý liên quan)

            Mẹo học tập và phương pháp giải bài tập hiệu quả

            • Nắm vững kiến thức lý thuyết: Hiểu rõ định nghĩa, tính chất, công thức trước khi bắt tay vào giải bài tập.
            • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để làm quen với các dạng bài và rèn luyện kỹ năng giải.
            • Sử dụng sơ đồ tư duy: Sơ đồ tư duy giúp bạn hệ thống hóa kiến thức và dễ dàng ghi nhớ.
            • Tìm kiếm sự giúp đỡ: Nếu gặp khó khăn, đừng ngần ngại hỏi giáo viên, bạn bè hoặc tìm kiếm trên internet.

            Tài liệu tham khảo hữu ích

            Ngoài sách giáo khoa, bạn có thể tham khảo thêm các tài liệu sau:

            • Sách bài tập Toán 12
            • Các trang web học Toán trực tuyến
            • Các video hướng dẫn giải bài tập Toán 12

            Tusach.vn hy vọng với những giải thích chi tiết và hướng dẫn hữu ích này, bạn sẽ tự tin hơn trong việc học tập và giải quyết các bài tập trong Mục 1 trang 6, 7, 8, 9, 10 Chuyên đề học tập Toán 12 - Chân trời sáng tạo. Chúc bạn học tốt!

            Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

            VỀ TUSACH.VN