Bài viết này cung cấp lời giải chi tiết và dễ hiểu cho bài 2 trang 14 trong Chuyên đề học tập Toán 12 - Chân trời sáng tạo. Chúng tôi sẽ phân tích từng bước giải, giúp bạn nắm vững kiến thức và kỹ năng cần thiết để giải quyết các bài toán tương tự.
Tusach.vn luôn đồng hành cùng bạn trên con đường chinh phục môn Toán. Hãy cùng khám phá lời giải chi tiết ngay sau đây!
Giải bài toán quy hoạch tuyến tính: (F = 10x + 20y to min ) với ràng buộc (left{ begin{array}{l}20{rm{x}} + 5y ge 40\16{rm{x}} + 60y ge 120\x - y le 3\x ge 0\y ge 0end{array} right.)
Đề bài
Giải bài toán quy hoạch tuyến tính:
\(F = 10x + 20y \to \min \)
với ràng buộc
\(\left\{ \begin{array}{l}20{\rm{x}} + 5y \ge 40\\16{\rm{x}} + 60y \ge 120\\x - y \le 3\\x \ge 0\\y \ge 0\end{array} \right.\)
Phương pháp giải - Xem chi tiết
Bước 1: Biểu diễn tập phương án của bài toán trên mặt phẳng toạ độ \(Oxy\).
Bước 2: Tính giá trị của biểu thức \(F\) tại các đỉnh của \({\Omega }\).
Trong trường hợp tập phương án là miền đa giác thì giá trị lớn nhất (nhỏ nhất) trong các giá trị này là giá trị lớn nhất (nhỏ nhất) của \(F\) trên \({\Omega }\).
Trong trường hợp tập phương án không là miền đa giác nằm trong góc phần tư thứ nhất và các hệ số \(a\) và \(b\) không âm thì giá trị nhỏ nhất trong các giá trị này là giá trị nhỏ nhất của \(F\) trên \({\Omega }\).
Lời giải chi tiết
Tập phương án \({\Omega }\) của bài toán là miền không gạch (không là miền đa giác).

Ta có \(A\left( {0;8} \right)\).
Toạ độ \(B\) là nghiệm của hệ \(\left\{ \begin{array}{l}20{\rm{x}} + 5y = 40\\15{\rm{x}} + 60y = 120\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{8}{5}\\y = \frac{8}{5}\end{array} \right.\). Vậy \(B\left( {\frac{8}{5};\frac{8}{5}} \right)\).
Toạ độ \(C\) là nghiệm của hệ \(\left\{ \begin{array}{l}x - y = 3\\15{\rm{x}} + 60y = 120\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 4\\y = 1\end{array} \right.\). Vậy \(C\left( {4;1} \right)\).
Do \({\Omega }\) nằm trong góc phần tư thứ nhất và các hệ số của biểu thức \(F = 10x + 20y\) đều dương nên \(F\) đạt giá trị nhỏ nhất tại một đỉnh của \({\Omega }\).
Ta có \(F\left( {0;8} \right) = 160;F\left( {\frac{8}{5};\frac{8}{5}} \right) = 48;F\left( {4;1} \right) = 60\).
Do đó \(F\) đạt giá trị nhỏ nhất tại đỉnh \(B\left( {\frac{8}{5};\frac{8}{5}} \right)\) và \(\mathop {\min }\limits_{\Omega } F = B\left( {\frac{8}{5};\frac{8}{5}} \right) = 48\).
Bài 2 trang 14 Chuyên đề học tập Toán 12 - Chân trời sáng tạo thường xoay quanh các chủ đề về đạo hàm, tích phân, hoặc các ứng dụng của đạo hàm và tích phân trong thực tế. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản, công thức và kỹ năng giải toán liên quan.
Trước khi đi vào giải chi tiết, chúng ta cần xác định rõ đề bài và yêu cầu của bài toán. Thông thường, bài toán sẽ yêu cầu tính đạo hàm, tìm cực trị, hoặc giải phương trình, bất phương trình liên quan đến hàm số.
Để giải bài 2 trang 14, chúng ta có thể áp dụng các phương pháp sau:
Dưới đây là lời giải chi tiết cho bài 2 trang 14 Chuyên đề học tập Toán 12 - Chân trời sáng tạo (giả sử đề bài cụ thể là tìm đạo hàm của hàm số f(x) = x3 - 3x2 + 2x - 1):
Vậy, f'(x) = 3x2 - 6x + 2.
Khi giải bài tập Toán 12, đặc biệt là các bài tập trong Chuyên đề học tập, bạn cần lưu ý những điều sau:
Để củng cố kiến thức, bạn có thể luyện tập thêm các bài tập tương tự sau:
Hy vọng với lời giải chi tiết và hướng dẫn giải trên, bạn đã hiểu rõ cách giải bài 2 trang 14 Chuyên đề học tập Toán 12 - Chân trời sáng tạo. Chúc bạn học tập tốt và đạt kết quả cao trong kỳ thi!
| Công thức | Mô tả |
|---|---|
| f'(x) | Đạo hàm của hàm số f(x) |
| ∫f(x)dx | Tích phân của hàm số f(x) |
| Nguồn: tusach.vn | |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập