Tusach.vn xin giới thiệu lời giải chi tiết bài 2 trang 20 Chuyên đề học tập Toán 12 - Chân trời sáng tạo. Bài viết này sẽ giúp học sinh hiểu rõ phương pháp giải và áp dụng vào các bài tập tương tự.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật mới nhất để hỗ trợ tốt nhất cho quá trình học tập của bạn.
Người ta muốn xây một bể bơi có dạng hình hộp chữ nhật, thể tích 1800 m3 và chiều sâu 2 m (Hình 7). Biết rằng chi phí xây mỗi đơn vị diện tích của đáy bể gấp hai lần so với thành bể. Cần chọn chiều dài và chiều rộng của bể bằng bao nhiêu để tiết kiệm chi phí xây dựng bể nhất?
Đề bài
Người ta muốn xây một bể bơi có dạng hình hộp chữ nhật, thể tích 1800 m3 và chiều sâu 2 m (Hình 7). Biết rằng chi phí xây mỗi đơn vị diện tích của đáy bể gấp hai lần so với thành bể. Cần chọn chiều dài và chiều rộng của bể bằng bao nhiêu để tiết kiệm chi phí xây dựng bể nhất?

Phương pháp giải - Xem chi tiết
• Tìm mối quan hệ giữa \(x,y\), biểu thị chi phí xây dựng bể thông qua các đại lượng đã biết và ẩn.
• Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một khoảng hay nửa khoảng bằng đạo hàm:
‒ Lập bảng biến thiên của hàm số trên tập hợp đó.
‒ Căn cứ vào bảng biến thiên, kết luận giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của hàm số.
Lời giải chi tiết
Gọi \(a\) là chi phí xây mỗi mét vuông thành bể.
Chi phí xây mỗi mét vuông đáy bể là \(2{\rm{a}}\).
Thể tích của bể là: \(2{\rm{x}}y\left( {{m^3}} \right)\).
Do bể có thể tích 1800 m3 nên ta có: \(2{\rm{x}}y = 1800 \Rightarrow y = \frac{{900}}{x}\).
Diện tích đáy bể là: \(xy = x.\frac{{900}}{x} = 900\left( {{m^2}} \right)\).
Diện tích thành bể là: \(2\left( {x + y} \right).2 = 4{\rm{x}} + 4y = 4{\rm{x}} + 4.\frac{{900}}{x} = 4{\rm{x}} + \frac{{3600}}{x}\left( {{m^2}} \right)\).
Chi phí xây bể là: \(P = 2a.900 + a.\left( {4{\rm{x}} + \frac{{3600}}{x}} \right) = 4a\left( {450 + x + \frac{{900}}{x}} \right)\) với \(x > 0\).
Xét hàm số \(f\left( x \right) = 450 + x + \frac{{900}}{x}\) trên khoảng \(\left( {0; + \infty } \right)\).
Ta có: \(f'\left( x \right) = 1 - \frac{{900}}{{{x^2}}}\)
\(f'\left( x \right) = 0 \Leftrightarrow 1 - \frac{{900}}{{{x^2}}} = 0 \Leftrightarrow {x^2} = 900 \Leftrightarrow x = 30\) hoặc \(x = - 30\) (loại).
Bảng biến thiên của hàm số trên khoảng \(\left( {0; + \infty } \right)\):

Từ bảng biến thiên, ta thấy \(\mathop {\min }\limits_{\left( {0; + \infty } \right)} f\left( x \right) = f\left( {30} \right) = 510\).
Vậy để tiết kiệm chi phí xây dựng bể nhất, cần chọn các kích thước \(x = 30m\) và \(y = \frac{{900}}{{30}} = 30m\).
Bài 2 trang 20 Chuyên đề học tập Toán 12 - Chân trời sáng tạo thường xoay quanh các chủ đề về đạo hàm, tích phân, hoặc các ứng dụng của đạo hàm và tích phân trong thực tế. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về:
Để cung cấp lời giải chi tiết, chúng ta cần biết chính xác nội dung của bài 2. Tuy nhiên, dưới đây là một ví dụ minh họa về cách tiếp cận và giải quyết một bài toán tương tự:
Bài toán: Cho hàm số f(x) = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.
Lời giải:
Để học tốt môn Toán 12 và giải quyết các bài tập một cách nhanh chóng và chính xác, bạn có thể áp dụng một số mẹo sau:
Tusach.vn là website cung cấp lời giải bài tập Toán 12, cùng với nhiều tài liệu học tập hữu ích khác. Chúng tôi luôn cập nhật nội dung mới nhất và cố gắng mang đến cho bạn trải nghiệm học tập tốt nhất. Hãy truy cập Tusach.vn để khám phá thêm nhiều tài liệu và lời giải bài tập Toán 12 nhé!
| Chủ đề | Liên kết |
|---|---|
| Giải bài tập Toán 12 Chân trời sáng tạo | https://tusach.vn/toan-12-chan-troi-sang-tao |
| Chuyên đề học tập Toán 12 | https://tusach.vn/chuyen-de-toan-12 |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập