Tusach.vn xin giới thiệu lời giải chi tiết Mục 2 trang 9, 10, 11, 12 Chuyên đề học tập Toán 12 - Kết nối tri thức. Bài viết này sẽ giúp các em học sinh hiểu rõ hơn về nội dung bài học và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp những lời giải chính xác, dễ hiểu và phù hợp với trình độ của học sinh.
Giả sử số vụ vi phạm Luật Giao thông trên một đoạn đường AB trong 98 buổi tối thứ Bảy được thống kê như sau: 10 tối không có vụ nào; 20 tối có 1 vụ; 23 tối có 2 vụ; 25 tối có 3 vụ; 15 tối có 4 vụ; 5 tối có 7 vụ. Hỏi trung bình có bao nhiêu vụ vi phạm Luật Giao thông trên đoạn đường B trong 98 buổi tối thứ Bảy đó?
Trả lời câu hỏi Hoạt động 3 trang 9 Chuyên đề học tập Toán 12 Kết nối tri thức
Giả sử số vụ vi phạm Luật Giao thông trên một đoạn đường AB trong 98 buổi tối thứ Bảy được thống kê như sau: 10 tối không có vụ nào; 20 tối có 1 vụ; 23 tối có 2 vụ; 25 tối có 3 vụ; 15 tối có 4 vụ; 5 tối có 7 vụ. Hỏi trung bình có bao nhiêu vụ vi phạm Luật Giao thông trên đoạn đường B trong 98 buổi tối thứ Bảy đó?
Phương pháp giải:
Trung bình = Tổng số vụ tai nạn / số buổi tối thứ Bảy
Lời giải chi tiết:
Có: \(0.10 + 1.20 + 2.23 + 3.25 + 4.15 + 7.5 = 236\) vụ vi phạm trong 98 buổi tối thứ Bảy
Vậy trung bình có \(\frac{{236}}{{98}} \approx 2,408\) vụ vi phạm trọng 98 buổi tối thứ Bảy
Trả lời câu hỏi trang 11 Chuyên đề học tập Toán 12 Kết nối tri thức
Trở lại HĐ4. Gọi X và Y tương ứng là doanh thu theo phương án 1 và phương án 2. Tính độ lệch chuẩn của X và Y.
Phương pháp giải:
Áp dụng công thức tính độ lệch chuẩn
Lời giải chi tiết:
\(\begin{array}{l}E(X) = 4\\V(X) = {\left( {8 - 4} \right)^2}.\frac{1}{3} + {\left( {2 - 4} \right)^2}.\frac{2}{3} = 8\\ \Rightarrow \sigma (X) = \sqrt 8 \approx 2,828.\end{array}\)
\(\begin{array}{l}E(Y) = 4\\V\left( Y \right) = {\left( {5 - 4} \right)^2}.\frac{1}{2} + {\left( {3 - 4} \right)^2}.\frac{1}{2} = 1\\ \Rightarrow \sigma \left( Y \right) = 1\end{array}\)
Trả lời câu hỏi Luyện tập 2 trang 10 Chuyên đề học tập Toán 12 Kết nối tri thức
Giả sử số vụ vi phạm Luật Giao thông trên một đoạn đường vào tối thứ Bảy có thể là 0; 1; 2; 3; 4; 5 với các xác suất tương ứng là 0,1; 0,2; 0,25; 0,15 và 0,05. Hỏi trung bình có bao nhiêu vụ vi phạm Luật Giao thông trên đoạn đường đó và tối thứ Bảy?
Phương pháp giải:
Bước 1: Dựa vào dữ kiện đề bài lập bảng phân bố xác suất của biến ngẫn nhiên X
Bước 2: Tính kì vọng \(E(X)\) theo công thức
Lời giải chi tiết:
Gọi X là số vụ vi phạm Luật Giao thông đường bộ trên đoạn đường vào tối thứ Bảy. Khi đó, X là biến ngẫu nhiên rời rạc có bảng phân bố xác suất:

Ta có:
\(\;E(X) = 0,01 + 1.0,2 + 2.0,25 + 3.0,25 + 4.0,15 + 5.0,05 = 2,3\)
Vậy trên đoạn đường vào tối thứ Bảy có trung bình 2,3 vụ vi phạm Luật Giao thông đường bộ
Trả lời câu hỏi Vận dụng 2 trang 11 Chuyên đề học tập Toán 12 Kết nối tri thức
Tiếp tục xét tình huống mở đầu, giả sử ở vòng 1 Minh chọn câu hỏi loại II.
a) Hỏi trung bình Minh nhận được bao nhiêu điểm?
b) Ở vòng 1 Minh nên chọn loại câu hỏi nào?
Phương pháp giải:
Bước 1: Dựa vào dữ kiện đề bài lập bảng phân bố xác suất của biến ngẫn nhiên Y.
Bước 2: Tính kì vọng \(E(Y)\) theo công thức.
Bước 3: So sánh \(E(X)\) với \(E(Y)\) và đưa ra kết luận.
Lời giải chi tiết:
a) Giả sử ở vòng 1 Minh chọn câu hỏi loại II. Gọi Y là số điểm Minh nhận được.
Gọi A là biến cố “Minh trả lời đúng câu hỏi loại I” \( \Rightarrow P\left( A \right) = 0,8\)
B là biến cố “Minh trả lời đúng câu hỏi loại II”. \( \Rightarrow P\left( B \right) = 0,6\)
+ Nếu trả lời sai: Minh được 0 điểm. Cuộc chơi kết thúc tại đây
Khi đó, \(P\left( {Y = 0} \right) = P(\overline B ) = 1--P\left( B \right) = 1--0,6 = 0,4.\)
+ Nếu trả lời đúng Minh nhận 80 điểm và Minh sẽ bước vào vòng 2, bốc ngẫu nhiên một câu hỏi loại I. Nếu trả lời sai, Minh không có điểm và phải dừng cuộc chơi và số điểm với số điểm nhận được là 80 + 0 = 80 điểm. Theo giả thiết A và B là biến cố độc lập. Theo công thức nên xác suất cho hai biến cố độc lập ta có:
\(P\left( {Y = 80} \right) = P(B\overline A ) = P\left( B \right)P(\overline A ) = \left( {0,6} \right)\left( {1--0,8} \right) = 0,12\)
+ Nếu trả lời đúng Minh nhận 80 điểm. Cuộc chơi kết thúc tại đây và Minh được 20 + 80 = 100 điểm. Theo công thức nhân xác suất cho hai biến cố độc lập ta có:
\(P\left( {Y = 100} \right) = P\left( {BA} \right) = P\left( B \right)P\left( A \right) = 0,6.{\rm{ }}0,8 = 0,48\)
Bảng phân bố xác suất của Y là:

Ta có: \(E\left( Y \right) = 0.0,4 + 80.0,12 + 100.0,48 = 57,6\).
Vậy trung bình Minh được 57,6 điểm
b) Ta có \(E(X) = 54,4\), \(E(Y) = 57,6\). Ta thấy \(E(Y) > E(X)\) nên ở vòng 1, Minh nên chọn câu hỏi loại II.
Trả lời câu hỏi Hoạt động 4 trang 11 Chuyên đề học tập Toán 12 Kết nối tri thức
Một nhà đầu tư xem xét hai phương án đầu tư. Với phương án 1 thì doanh thu một năm sẽ là 8 tỉ đồng hoặc 2 tỉ đồng với xác suất tương ứng là \(\frac{1}{3}\) và \(\frac{2}{3}\). Với phương án 2 thì doanh thu một năm sẽ là 5 tỉ đồng hoặc 3 tỉ đồng với hai xác suất bằng nhau.
a) Hãy so sánh doanh thu trung bình của phương án 1 và phương án 2.
b) Nhà đầu tư nên chọn phương án nào?
Phương pháp giải:
Bước 1: Dựa vào dữ kiện đề bài lập bảng phân bố xác suất của biến ngẫn nhiên X, Y.
Bước 2: Tính kì vọng \(E(X)\),\(E(Y)\) theo công thức.
Bước 3: So sánh \(E(X)\) với \(E(Y)\) và đưa ra kết luận.
Lời giải chi tiết:
a) Gọi X và Y tương ứng là doanh thu theo phương án 1 và phương án 2
Ta có bảng phân bố xác suất của biến ngẫu nhiên X và Y

Khi đó, \(E(X) = 8.\frac{1}{3} + 2.\frac{2}{3} = 4\); \(E(Y) = 3.\frac{1}{2} + 5.\frac{1}{2} = 4\).
Ta thấy \(E(X) = E(Y)\) nên doanh thu trung bình của hai phương án bằng nhau.
b)
Phương án 1 nếu nhà đầu tư ưa mạo hiểm
Phương án 2 nếu nhà đầu tư muốn sự an toàn
Trả lời câu hỏi Luyện tập 3 trang 12 Chuyên đề học tập Toán 12 Kết nối tri thức
Cho biến ngẫu nhiên rời rạc X với bảng phân bố xác suất như sau:

a) Tính \(V(X)\) và \(\sigma (X)\) theo định nghĩa
b) Tính \(V(X)\) theo công thức (2).
Phương pháp giải:
Áp dụng các công thức để tính.
Lời giải chi tiết:
a)
\(E(X) = 0.0,16 + 1.0,18 + 2.0,25 + 3.0,28 + 4.0,13 = 2,04.\)
\(\begin{array}{l}V\left( X \right) = {\left( {0--2,04} \right)^2}.0,16 + {\left( {1--2,04} \right)^2}.0,18 + {\left( {2--2,04} \right)^2}.0,25 + {\left( {3--2,04} \right)^2}.0,28\\{\rm{ }} + {\left( {4--2,04} \right)^2}.0,13 = 1,6184.\\ \Rightarrow \sigma \left( X \right) = \sqrt {1,6184} \approx 1,2722\end{array}\)
b) \(V\left( X \right) = {0^2}.0,16 + {1^2}.0,18 + {2^2}.0,25 + {3^2}.0,28 + {4^2}.0,13--{\left( {2,04} \right)^2} = 1,6184.\)
Trả lời câu hỏi Hoạt động 3 trang 9 Chuyên đề học tập Toán 12 Kết nối tri thức
Giả sử số vụ vi phạm Luật Giao thông trên một đoạn đường AB trong 98 buổi tối thứ Bảy được thống kê như sau: 10 tối không có vụ nào; 20 tối có 1 vụ; 23 tối có 2 vụ; 25 tối có 3 vụ; 15 tối có 4 vụ; 5 tối có 7 vụ. Hỏi trung bình có bao nhiêu vụ vi phạm Luật Giao thông trên đoạn đường B trong 98 buổi tối thứ Bảy đó?
Phương pháp giải:
Trung bình = Tổng số vụ tai nạn / số buổi tối thứ Bảy
Lời giải chi tiết:
Có: \(0.10 + 1.20 + 2.23 + 3.25 + 4.15 + 7.5 = 236\) vụ vi phạm trong 98 buổi tối thứ Bảy
Vậy trung bình có \(\frac{{236}}{{98}} \approx 2,408\) vụ vi phạm trọng 98 buổi tối thứ Bảy
Trả lời câu hỏi Luyện tập 2 trang 10 Chuyên đề học tập Toán 12 Kết nối tri thức
Giả sử số vụ vi phạm Luật Giao thông trên một đoạn đường vào tối thứ Bảy có thể là 0; 1; 2; 3; 4; 5 với các xác suất tương ứng là 0,1; 0,2; 0,25; 0,15 và 0,05. Hỏi trung bình có bao nhiêu vụ vi phạm Luật Giao thông trên đoạn đường đó và tối thứ Bảy?
Phương pháp giải:
Bước 1: Dựa vào dữ kiện đề bài lập bảng phân bố xác suất của biến ngẫn nhiên X
Bước 2: Tính kì vọng \(E(X)\) theo công thức
Lời giải chi tiết:
Gọi X là số vụ vi phạm Luật Giao thông đường bộ trên đoạn đường vào tối thứ Bảy. Khi đó, X là biến ngẫu nhiên rời rạc có bảng phân bố xác suất:

Ta có:
\(\;E(X) = 0,01 + 1.0,2 + 2.0,25 + 3.0,25 + 4.0,15 + 5.0,05 = 2,3\)
Vậy trên đoạn đường vào tối thứ Bảy có trung bình 2,3 vụ vi phạm Luật Giao thông đường bộ
Trả lời câu hỏi Vận dụng 2 trang 11 Chuyên đề học tập Toán 12 Kết nối tri thức
Tiếp tục xét tình huống mở đầu, giả sử ở vòng 1 Minh chọn câu hỏi loại II.
a) Hỏi trung bình Minh nhận được bao nhiêu điểm?
b) Ở vòng 1 Minh nên chọn loại câu hỏi nào?
Phương pháp giải:
Bước 1: Dựa vào dữ kiện đề bài lập bảng phân bố xác suất của biến ngẫn nhiên Y.
Bước 2: Tính kì vọng \(E(Y)\) theo công thức.
Bước 3: So sánh \(E(X)\) với \(E(Y)\) và đưa ra kết luận.
Lời giải chi tiết:
a) Giả sử ở vòng 1 Minh chọn câu hỏi loại II. Gọi Y là số điểm Minh nhận được.
Gọi A là biến cố “Minh trả lời đúng câu hỏi loại I” \( \Rightarrow P\left( A \right) = 0,8\)
B là biến cố “Minh trả lời đúng câu hỏi loại II”. \( \Rightarrow P\left( B \right) = 0,6\)
+ Nếu trả lời sai: Minh được 0 điểm. Cuộc chơi kết thúc tại đây
Khi đó, \(P\left( {Y = 0} \right) = P(\overline B ) = 1--P\left( B \right) = 1--0,6 = 0,4.\)
+ Nếu trả lời đúng Minh nhận 80 điểm và Minh sẽ bước vào vòng 2, bốc ngẫu nhiên một câu hỏi loại I. Nếu trả lời sai, Minh không có điểm và phải dừng cuộc chơi và số điểm với số điểm nhận được là 80 + 0 = 80 điểm. Theo giả thiết A và B là biến cố độc lập. Theo công thức nên xác suất cho hai biến cố độc lập ta có:
\(P\left( {Y = 80} \right) = P(B\overline A ) = P\left( B \right)P(\overline A ) = \left( {0,6} \right)\left( {1--0,8} \right) = 0,12\)
+ Nếu trả lời đúng Minh nhận 80 điểm. Cuộc chơi kết thúc tại đây và Minh được 20 + 80 = 100 điểm. Theo công thức nhân xác suất cho hai biến cố độc lập ta có:
\(P\left( {Y = 100} \right) = P\left( {BA} \right) = P\left( B \right)P\left( A \right) = 0,6.{\rm{ }}0,8 = 0,48\)
Bảng phân bố xác suất của Y là:

Ta có: \(E\left( Y \right) = 0.0,4 + 80.0,12 + 100.0,48 = 57,6\).
Vậy trung bình Minh được 57,6 điểm
b) Ta có \(E(X) = 54,4\), \(E(Y) = 57,6\). Ta thấy \(E(Y) > E(X)\) nên ở vòng 1, Minh nên chọn câu hỏi loại II.
Trả lời câu hỏi Hoạt động 4 trang 11 Chuyên đề học tập Toán 12 Kết nối tri thức
Một nhà đầu tư xem xét hai phương án đầu tư. Với phương án 1 thì doanh thu một năm sẽ là 8 tỉ đồng hoặc 2 tỉ đồng với xác suất tương ứng là \(\frac{1}{3}\) và \(\frac{2}{3}\). Với phương án 2 thì doanh thu một năm sẽ là 5 tỉ đồng hoặc 3 tỉ đồng với hai xác suất bằng nhau.
a) Hãy so sánh doanh thu trung bình của phương án 1 và phương án 2.
b) Nhà đầu tư nên chọn phương án nào?
Phương pháp giải:
Bước 1: Dựa vào dữ kiện đề bài lập bảng phân bố xác suất của biến ngẫn nhiên X, Y.
Bước 2: Tính kì vọng \(E(X)\),\(E(Y)\) theo công thức.
Bước 3: So sánh \(E(X)\) với \(E(Y)\) và đưa ra kết luận.
Lời giải chi tiết:
a) Gọi X và Y tương ứng là doanh thu theo phương án 1 và phương án 2
Ta có bảng phân bố xác suất của biến ngẫu nhiên X và Y

Khi đó, \(E(X) = 8.\frac{1}{3} + 2.\frac{2}{3} = 4\); \(E(Y) = 3.\frac{1}{2} + 5.\frac{1}{2} = 4\).
Ta thấy \(E(X) = E(Y)\) nên doanh thu trung bình của hai phương án bằng nhau.
b)
Phương án 1 nếu nhà đầu tư ưa mạo hiểm
Phương án 2 nếu nhà đầu tư muốn sự an toàn
Trả lời câu hỏi trang 11 Chuyên đề học tập Toán 12 Kết nối tri thức
Trở lại HĐ4. Gọi X và Y tương ứng là doanh thu theo phương án 1 và phương án 2. Tính độ lệch chuẩn của X và Y.
Phương pháp giải:
Áp dụng công thức tính độ lệch chuẩn
Lời giải chi tiết:
\(\begin{array}{l}E(X) = 4\\V(X) = {\left( {8 - 4} \right)^2}.\frac{1}{3} + {\left( {2 - 4} \right)^2}.\frac{2}{3} = 8\\ \Rightarrow \sigma (X) = \sqrt 8 \approx 2,828.\end{array}\)
\(\begin{array}{l}E(Y) = 4\\V\left( Y \right) = {\left( {5 - 4} \right)^2}.\frac{1}{2} + {\left( {3 - 4} \right)^2}.\frac{1}{2} = 1\\ \Rightarrow \sigma \left( Y \right) = 1\end{array}\)
Trả lời câu hỏi Luyện tập 3 trang 12 Chuyên đề học tập Toán 12 Kết nối tri thức
Cho biến ngẫu nhiên rời rạc X với bảng phân bố xác suất như sau:

a) Tính \(V(X)\) và \(\sigma (X)\) theo định nghĩa
b) Tính \(V(X)\) theo công thức (2).
Phương pháp giải:
Áp dụng các công thức để tính.
Lời giải chi tiết:
a)
\(E(X) = 0.0,16 + 1.0,18 + 2.0,25 + 3.0,28 + 4.0,13 = 2,04.\)
\(\begin{array}{l}V\left( X \right) = {\left( {0--2,04} \right)^2}.0,16 + {\left( {1--2,04} \right)^2}.0,18 + {\left( {2--2,04} \right)^2}.0,25 + {\left( {3--2,04} \right)^2}.0,28\\{\rm{ }} + {\left( {4--2,04} \right)^2}.0,13 = 1,6184.\\ \Rightarrow \sigma \left( X \right) = \sqrt {1,6184} \approx 1,2722\end{array}\)
b) \(V\left( X \right) = {0^2}.0,16 + {1^2}.0,18 + {2^2}.0,25 + {3^2}.0,28 + {4^2}.0,13--{\left( {2,04} \right)^2} = 1,6184.\)
Mục 2 của Chuyên đề học tập Toán 12 - Kết nối tri thức thường tập trung vào một chủ đề cụ thể, đòi hỏi học sinh phải nắm vững kiến thức nền tảng và kỹ năng giải quyết vấn đề. Việc giải các bài tập trang 9, 10, 11, 12 không chỉ giúp học sinh củng cố lý thuyết mà còn rèn luyện khả năng áp dụng kiến thức vào thực tế.
Để hiểu rõ hơn về Mục 2, chúng ta cần xác định chủ đề chính mà nó đề cập đến. Ví dụ:
Dưới đây là hướng dẫn giải chi tiết một số bài tập tiêu biểu trong Mục 2:
(Giả sử bài tập là tính đạo hàm của hàm số f(x) = x2 + 2x - 1)
Lời giải:
Áp dụng quy tắc đạo hàm của tổng và đạo hàm của hàm số lũy thừa, ta có:
f'(x) = 2x + 2
(Giả sử bài tập là tìm cực trị của hàm số f(x) = x3 - 3x2 + 2)
Lời giải:
Để giải các bài tập trong Mục 2 một cách nhanh chóng và hiệu quả, bạn có thể áp dụng một số mẹo sau:
Ngoài sách giáo khoa, bạn có thể tham khảo thêm các tài liệu sau để học tốt môn Toán 12:
Tusach.vn hy vọng rằng với những hướng dẫn chi tiết và hữu ích này, các em học sinh sẽ tự tin hơn trong việc giải các bài tập Mục 2 trang 9, 10, 11, 12 Chuyên đề học tập Toán 12 - Kết nối tri thức. Chúc các em học tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập