1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 2.3 trang 33 Chuyên đề học tập Toán 12 - Kết nối tri thức

Giải bài 2.3 trang 33 Chuyên đề học tập Toán 12 - Kết nối tri thức

Giải bài 2.3 trang 33 Chuyên đề học tập Toán 12 - Kết nối tri thức

Bài 2.3 trang 33 Chuyên đề học tập Toán 12 thuộc chương trình Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về...

Tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Một nhà máy hóa chất sản xuất hai hợp chất X và Y. Khi sản xuất một đơn vị hợp chất X sẽ có 2 dm3 khí CO (carbon monoxide) và 6 dm3 khí SO2 (sulfur dioxide) phát tán ra môi trường. Khi sản xuất một đơn vị hợp chất Y sẽ có 4 dm3 khí CO và 3 dm3 khí SO2 phát tán ra môi trường. Các yêu cầu về khí thải chỉ cho phép nhà máy phát thải ra môi trường mỗi tuần không quá 3 000 dm3 khí CO và không quá 5 400 dm3 khí SO2. Nhà máy có thể bán hết tất cả các đơn vị hợp chất X và Y sản xuất ra với giá 36 000 đồn

Đề bài

Một nhà máy hóa chất sản xuất hai hợp chất X và Y. Khi sản xuất một đơn vị hợp chất X sẽ có 2 dm3 khí CO (carbon monoxide) và 6 dm3 khí SO2 (sulfur dioxide) phát tán ra môi trường. Khi sản xuất một đơn vị hợp chất Y sẽ có 4 dm3 khí CO và 3 dm3 khí SO2 phát tán ra môi trường. Các yêu cầu về khí thải chỉ cho phép nhà máy phát thải ra môi trường mỗi tuần không quá 3 000 dm3 khí CO và không quá 5 400 dm3 khí SO2. Nhà máy có thể bán hết tất cả các đơn vị hợp chất X và Y sản xuất ra với giá 36 000 đồng một đơn vị hợp chất X và 24 000 đồng một đơn vị hợp chất Y. Xác định số đơn vị hợp chất X và Y mỗi loại cần sản xuất trong một tuần để thu được lợi nhuận cao nhất mà vẫn đảm bảo các yêu cầu về khí thải môi trường.

Phương pháp giải - Xem chi tiếtGiải bài 2.3 trang 33 Chuyên đề học tập Toán 12 - Kết nối tri thức 1

F(x; y) đạt giá trị lớn nhất tại một trong các đỉnh của tứ giác. Tính giá trị của F(x; y) tại các điểm cực biên

Lời giải chi tiết

Gọi x và y lần lượt là số đơn vị hợp chất X và Y cần sản xuất.

Lợi nhuận thu được là: F(x; y) = 36 000x + 24 000y (đồng).

Ta có hệ bất phương trình sau:

\(\left\{ \begin{array}{l}x \ge 0,y \ge 0\\2{\rm{x}} + 4y \le 3{\rm{ }}000\\6{\rm{x}} + 3y \le {\rm{5 400}}\end{array} \right.\)

Miền nghiệm của hệ bất phương trình này là miền tứ giác OABC được tô màu như hình vẽ dưới đây:

Giải bài 2.3 trang 33 Chuyên đề học tập Toán 12 - Kết nối tri thức 2

Các điểm cực biên là: O(0; 0), A(0; 750), B(700; 400), C(900; 0).

Ta có:

F(0; 0) = 36 000.0 + 24 000.0 = 0;

F(0; 750) = 36 000.0 + 24 000.750 = 18 000 000;

F(700; 400) = 36 000.700 + 24 000.400 = 34 800 000;

F(900; 0) = 36 000.900 + 24 000.0 = 32 400 000.

Giá trị lớn nhất của F(x; y) bằng 34 800 tại điểm cực biên B(700; 400).

Vậy cần sản xuất 700 đơn vị hợp chất X và 400 đơn vị hợp chất Y trong một tuần để thu được lợi nhuận cao nhất mà vẫn đảm bảo các yêu cầu về khí thải môi trường.

Giải bài 2.3 trang 33 Chuyên đề học tập Toán 12 - Kết nối tri thức: Hướng dẫn chi tiết và dễ hiểu

Bài 2.3 trang 33 Chuyên đề học tập Toán 12 - Kết nối tri thức là một bài tập thuộc chủ đề về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Dưới đây là hướng dẫn chi tiết cách giải bài tập này:

Đề bài:

Cho hàm số f(x) = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.

Lời giải:

  1. Bước 1: Tính đạo hàm f'(x)
  2. f'(x) = 3x2 - 6x

  3. Bước 2: Tìm các điểm làm f'(x) = 0
  4. 3x2 - 6x = 0

    3x(x - 2) = 0

    => x = 0 hoặc x = 2

  5. Bước 3: Lập bảng biến thiên
  6. x-∞02+∞
    f'(x)+-+
    f(x)
  7. Bước 4: Kết luận
  8. Dựa vào bảng biến thiên, ta thấy:

    • Hàm số đạt cực đại tại x = 0, giá trị cực đại là f(0) = 2
    • Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là f(2) = -2

Lưu ý quan trọng:

Khi giải các bài toán về đạo hàm, cần chú ý các bước sau:

  • Tính đạo hàm f'(x) một cách chính xác.
  • Tìm các điểm làm f'(x) = 0.
  • Lập bảng biến thiên để xác định khoảng đồng biến, nghịch biến và các điểm cực trị.
  • Kết luận về các điểm cực trị và giá trị tương ứng.

Mở rộng kiến thức:

Để hiểu sâu hơn về đạo hàm, các em có thể tham khảo thêm các kiến thức sau:

  • Định nghĩa đạo hàm.
  • Các quy tắc tính đạo hàm.
  • Ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đồng biến, nghịch biến của hàm số.

Tusach.vn hy vọng với hướng dẫn chi tiết này, các em học sinh sẽ tự tin giải bài 2.3 trang 33 Chuyên đề học tập Toán 12 - Kết nối tri thức một cách hiệu quả. Chúc các em học tốt!

Các bài tập tương tự:

Các em có thể luyện tập thêm với các bài tập tương tự trong sách giáo khoa và sách bài tập Toán 12 - Kết nối tri thức để củng cố kiến thức và kỹ năng.

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN