1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 1.17 trang 22 Chuyên đề học tập Toán 12 - Kết nối tri thức

Giải bài 1.17 trang 22 Chuyên đề học tập Toán 12 - Kết nối tri thức

Giải bài 1.17 trang 22 Chuyên đề học tập Toán 12 - Kết nối tri thức

Bài 1.17 trang 22 Chuyên đề học tập Toán 12 thuộc chương trình Kết nối tri thức là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.

Tusach.vn cung cấp lời giải chi tiết, dễ hiểu, giúp các em học sinh nắm vững kiến thức và tự tin giải các bài tập tương tự.

Một hệ thống tin có n thành phần hoạt động độc lập với nhau. Xác suất hoạt động của mỗi thành phần là p. Hệ hoạt động nếu có ít nhất một nửa các thành phần hoạt động. Với giá trị nào của p thì hệ 5 thành phần tốt hơn hệ 3 thành phần?

Đề bài

Một hệ thống tin có n thành phần hoạt động độc lập với nhau. Xác suất hoạt động của mỗi thành phần là p. Hệ hoạt động nếu có ít nhất một nửa các thành phần hoạt động. Với giá trị nào của p thì hệ 5 thành phần tốt hơn hệ 3 thành phần?

Phương pháp giải - Xem chi tiếtGiải bài 1.17 trang 22 Chuyên đề học tập Toán 12 - Kết nối tri thức 1

Áp dụng chú ý về phân bố nhị thức.

Lời giải chi tiết

+ Với hệ 5 thành phần:

Gọi X là số thành phần hoạt động. Khi đó, \(X \sim B(5;p)\)

Hệ hoạt động nếu \(X \ge 3\). Theo chú ý về phân bố nhị thức ta có:

\(\begin{array}{l}P(X \ge 3) = P(X = 3) + P(X = 4) + P(X = 5)\\{\rm{ }} = C_5^3.{p^3}.{(1 - p)^2} + C_5^4.{p^4}.(1 - p) + {p^5}\\{\rm{ }} = 10.({p^3} - 2{p^4} + {p^5}) + 5.({p^4} - {p^5}) + {p^5}\\{\rm{ }} = 6{p^5} - 15{p^4} + 10{p^3}\end{array}\) + Với hệ 3 thành phần:

Gọi Y là số thành phần hoạt động. Khi đó, \(Y \sim B(3;p)\)

Hệ hoạt động nếu \(Y \ge 2\). Theo chú ý về phân bố nhị thức ta có:

\(\begin{array}{l}P(Y \ge 3) = P(Y = 2) + P(X = 3)\\{\rm{ }} = C_3^2.{p^2}.(1 - p) + {p^3}\\{\rm{ }} = 3{p^2} - 2{p^3}\end{array}\)

Để hệ 5 thành phần tốt hơn hệ 3 thành phần thì:

\(\begin{array}{l}{\rm{ }}6{p^5} - 15{p^4} + 10{p^3} > 3{p^2} - 2{p^3}\\ \Leftrightarrow 6{p^5} - 15{p^4} + 12{p^3} - 3{p^2} > 0\\ \Leftrightarrow 2{p^3} - 5{p^2} + 4p - 1 > 0{\rm{ (Do }}p \ge 0)\\ \Leftrightarrow {\left( {p - 1} \right)^2}.(2p - 1) > 0\\ \Leftrightarrow \left\{ \begin{array}{l}p \ne 1\\p > \frac{1}{2}\end{array} \right.{\rm{ }}\end{array}\)

Mà \(p \in \left[ {0;1} \right]\) nên \(\frac{1}{2} < p < 1\).

Giải bài 1.17 trang 22 Chuyên đề học tập Toán 12 - Kết nối tri thức: Hướng dẫn chi tiết

Bài 1.17 trang 22 Chuyên đề học tập Toán 12 - Kết nối tri thức yêu cầu học sinh khảo sát hàm số và tìm các điểm cực trị. Để giải bài này, chúng ta cần nắm vững các bước sau:

  1. Xác định tập xác định của hàm số: Tìm khoảng mà hàm số có nghĩa.
  2. Tính đạo hàm bậc nhất: Tính f'(x) để tìm các điểm dừng (điểm mà f'(x) = 0 hoặc không xác định).
  3. Lập bảng biến thiên: Xác định dấu của f'(x) trên các khoảng xác định để xác định khoảng hàm số đồng biến, nghịch biến.
  4. Tìm cực trị: Sử dụng dấu của f'(x) để xác định các điểm cực đại, cực tiểu.
  5. Khảo sát giới hạn và tiệm cận: Xác định giới hạn của hàm số khi x tiến tới vô cùng và các giá trị đặc biệt.
  6. Vẽ đồ thị hàm số: Dựa trên các thông tin đã thu thập để vẽ đồ thị hàm số.

Lời giải chi tiết bài 1.17 trang 22

Để minh họa, giả sử hàm số cần khảo sát là: f(x) = x3 - 3x2 + 2

Bước 1: Tập xác định

Hàm số f(x) = x3 - 3x2 + 2 xác định trên tập số thực R.

Bước 2: Đạo hàm bậc nhất

f'(x) = 3x2 - 6x

Bước 3: Tìm điểm dừng

Giải phương trình f'(x) = 0:

3x2 - 6x = 0

3x(x - 2) = 0

Vậy, x = 0 hoặc x = 2 là các điểm dừng.

Bước 4: Lập bảng biến thiên

x-∞02+∞
f'(x)+-+
f(x)Đồng biếnNghịch biếnĐồng biến

Bước 5: Tìm cực trị

  • Tại x = 0, f'(x) đổi dấu từ dương sang âm, nên x = 0 là điểm cực đại. Giá trị cực đại là f(0) = 2.
  • Tại x = 2, f'(x) đổi dấu từ âm sang dương, nên x = 2 là điểm cực tiểu. Giá trị cực tiểu là f(2) = -2.

Bước 6: Kết luận

Hàm số f(x) = x3 - 3x2 + 2 đồng biến trên các khoảng (-∞; 0) và (2; +∞), nghịch biến trên khoảng (0; 2). Hàm số đạt cực đại tại x = 0 với giá trị là 2 và đạt cực tiểu tại x = 2 với giá trị là -2.

Mẹo giải nhanh và hiệu quả

Để giải nhanh các bài tập khảo sát hàm số, bạn nên:

  • Nắm vững các công thức đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng máy tính cầm tay để kiểm tra lại kết quả.

Tusach.vn - Đồng hành cùng bạn học Toán 12

Tusach.vn luôn cập nhật lời giải chi tiết và chính xác cho tất cả các bài tập trong sách giáo khoa Toán 12 Kết nối tri thức. Hãy truy cập tusach.vn để học Toán 12 hiệu quả hơn!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN