Tusach.vn xin giới thiệu lời giải chi tiết bài tập 1.15 trang 22 Chuyên đề học tập Toán 12 Kết nối tri thức. Bài giải này được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và kỹ năng giải toán.
Chúng tôi luôn cố gắng cung cấp những tài liệu học tập chất lượng nhất để hỗ trợ các em học sinh trong quá trình học tập.
Một cuộc thi gồm hai loại câu hỏi. Câu hỏi loại 1 và câu hỏi loại 2. Ở vòng 1 thí sinh bốc ngẫu nhiên câu hỏi loại (i in left{ {1;{rm{ }}2} right}). Nếu trả lời sai thì thí sinh dừng cuộc thi tại đây. Nếu trả lời đúng, thí sinh sẽ đi tiếp vào vòng 2, tiếp tục bốc ngẫu nhiên một câu hỏi loại (j in left{ {1;{rm{ }}2} right}(j ne i).) Sau khi thí sinh trả lời câu hỏi này, cuộc thi kết thúc. Thí sinh sẽ nhận được ({V_i}) điểm nếu trả lời đúng câu hỏi loại (i in left{ {1;{rm{
Đề bài
Một cuộc thi gồm hai loại câu hỏi. Câu hỏi loại 1 và câu hỏi loại 2. Ở vòng 1 thí sinh bốc ngẫu nhiên câu hỏi loại \(i \in \left\{ {1;{\rm{ }}2} \right\}\). Nếu trả lời sai thì thí sinh dừng cuộc thi tại đây. Nếu trả lời đúng, thí sinh sẽ đi tiếp vào vòng 2, tiếp tục bốc ngẫu nhiên một câu hỏi loại \(j \in \left\{ {1;{\rm{ }}2} \right\}(j \ne i).\) Sau khi thí sinh trả lời câu hỏi này, cuộc thi kết thúc. Thí sinh sẽ nhận được \({V_i}\) điểm nếu trả lời đúng câu hỏi loại \(i \in \left\{ {1;{\rm{ }}2} \right\}\). Giả thiết rằng việc trả lời đúng câu hỏi vòng 1 sẽ không ảnh hưởng đến xác suất trả lời đúng hay sai câu hỏi ở vòng 2. Bạn An tham gia cuộc thi. Gọi \({E_i}\) là biển cố: "An trả lời đúng câu hỏi loại \(i\)”(\(i \in \left\{ {1;{\rm{ }}2} \right\}\)). Giả sử \(P(E) = {p_i}\).
a) Với điều kiện nào thì ở vòng 1, An nên bốc ngẫu nhiên câu hỏi loại 1?
b) Giả sử \({p_1} = 0,6;{p_2} = 0,8;{V_1} = 20;{V_2} = 10\). Khi đó ở vòng 1, An nên bắc ngẫu nhiên câu hỏi loại nào?
Phương pháp giải - Xem chi tiết
Sử dụng tính chất của biến ngẫu nhiên rời rạc, công thức nhân xác suất của 2 biến cố độc lập.
Lời giải chi tiết
Trường hợp 1: Nếu ở vòng 1 An bốc ngẫu nhiên câu hỏi loại 1.
+ Nếu trả lời sai thì An được 0 điểm. Cuộc thi kết thúc tại đây.
Vậy \(P({X_1} = 0) = P(\overline {{E_1}} ) = 1 - {p_1}.\)
+ Nếu trả lời đúng thì An nhận \({V_1}\) điểm và An được đi tiếp vòng 2: Bốc ngẫu nhiên một câu hỏi loại 2.
\({E_i}\) là biến cố: “Trả lời đúng câu hỏi loại \(i\)”, \(i \in \left\{ {1;2} \right\}\).
Nếu trả lời sai câu hỏi loại 2 thì An nhận 0 điểm. Cuộc thi kết thúc và An nhận được \({V_1}\) điểm.
Theo giả thiết \({E_1},\overline {{E_2}} \) là hai biến cố độc lập. Theo công thức nhân xác suất ta có:
\(P({X_1} = {V_1}) = P({E_1}\overline {{E_2}} ) = P({E_1}).P(\overline {{E_2}} ) = {p_1}(1 - {p_2})\)
Nếu trả lời đúng câu hỏi loại 2 thì An nhận \({V_2}\) điểm. Cuộc thi kết thúc và An nhận được \({V_1} + {V_2}\) điểm.
Theo giả thiết \({E_1},{E_2}\) là hai biến cố độc lập. Theo công thức nhân xác suất ta có:
\(P({X_1} = {V_1} + {V_2}) = P({E_1}{E_2}) = P({E_1}).P({E_2}) = {p_1}{p_2}\)
Ta có bảng phân bố xác suất của \({X_1}\) là:

\(E({X_1}) = {V_1}{p_1}(1 - {p_2}) + \left( {{V_1} + {V_2}} \right){p_1}{p_2}\)
Trường hợp 2: Nếu ở vòng 1 An bốc ngẫu nhiên câu hỏi loại 2.
Tương tự trường hợp 1, ta có bảng phân bố xác suất của \({X_2}\) là:

\(E({X_2}) = {V_2}{p_2}(1 - {p_1}) + \left( {{V_1} + {V_2}} \right){p_1}{p_2}\)
a) Ở vòng 1 An nên chọn câu hỏi loại 1 trước nếu:
\(\begin{array}{l}E({X_1}) \ge E({X_2}) \Leftrightarrow {V_1}{p_1}(1 - {p_2}) + \left( {{V_1} + {V_2}} \right){p_1}{p_2} > {V_2}{p_2}(1 - {p_1}) + \left( {{V_1} + {V_2}} \right){p_1}{p_2}\\{\rm{ }} \Leftrightarrow {V_1}{p_1}(1 - {p_2}) \ge {V_2}{p_2}(1 - {p_1})\\{\rm{ }} \Leftrightarrow \frac{{{V_1}{p_1}}}{{1 - {p_1}}} \ge \frac{{{V_2}{p_2}}}{{1 - {p_2}}}\end{array}\)
b) Ta có: \(\frac{{{V_1}{p_1}}}{{1 - {p_1}}} = \frac{{20.0,6}}{{1 - 0,6}} = 30;\frac{{{V_2}{p_2}}}{{1 - {p_2}}} = \frac{{10.0,8}}{{1 - 0,8}} = 40\)
Ta thấy \(\frac{{{V_1}{p_1}}}{{1 - {p_1}}} < \frac{{{V_2}{p_2}}}{{1 - {p_2}}}\)nên ở vòng 1 An nên chọn câu hỏi loại 2 trước.
Bài 1.15 trang 22 Chuyên đề học tập Toán 12 - Kết nối tri thức thuộc chương trình học Toán 12, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Bài 1.15 thường xoay quanh các dạng bài sau:
Để giải bài 1.15 trang 22 Chuyên đề học tập Toán 12 - Kết nối tri thức, chúng ta cần thực hiện các bước sau:
Ví dụ minh họa:
Giả sử bài tập yêu cầu tìm đạo hàm của hàm số f(x) = x3 - 3x2 + 2x. Ta thực hiện như sau:
f'(x) = 3x2 - 6x + 2
Để học tốt môn Toán 12, bạn có thể tham khảo các tài liệu sau:
Bài 1.15 trang 22 Chuyên đề học tập Toán 12 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng với lời giải chi tiết và các mẹo giải nhanh mà Tusach.vn cung cấp, các em học sinh sẽ tự tin hơn trong quá trình học tập.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập