1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 2.10 trang 43 Chuyên đề học tập Toán 12 - Kết nối tri thức

Giải bài 2.10 trang 43 Chuyên đề học tập Toán 12 - Kết nối tri thức

Giải bài 2.10 trang 43 Chuyên đề học tập Toán 12 - Kết nối tri thức

Tusach.vn cung cấp lời giải chi tiết, dễ hiểu bài 2.10 trang 43 Chuyên đề học tập Toán 12 Kết nối tri thức. Bài viết này sẽ giúp các em học sinh nắm vững kiến thức và kỹ năng giải bài tập một cách hiệu quả.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập tốt nhất, giúp các em tự tin chinh phục môn Toán.

Giả sử (Cleft( x right) = 18{rm{ }}000 + 500x--1,6{x^2} + 0,004{x^3};)(nghìn đồng) là hàm chi phí và (pleft( x right) = 1{rm{ }}500--3x) (nghìn đồng) là hàm cầu của (x) đơn vị một loại hàng hóa nào đó. a) Tìm công thức của hàm lợi nhuận (Pleft( x right)), biết rằng hàm lợi nhuận bằng hiệu của hàm doanh thu và hàm chi phí. b) Tìm mức sản xuất x để lợi nhuận thu được là lớn nhất.

Đề bài

Giả sử \(C\left( x \right) = 18{\rm{ }}000 + 500x--1,6{x^2} + 0,004{x^3}\;\)(nghìn đồng) là hàm chi phí và \(p\left( x \right) = 1{\rm{ }}500--3x\) (nghìn đồng) là hàm cầu của \(x\) đơn vị một loại hàng hóa nào đó.

a) Tìm công thức của hàm lợi nhuận \(P\left( x \right)\), biết rằng hàm lợi nhuận bằng hiệu của hàm doanh thu và hàm chi phí.

b) Tìm mức sản xuất x để lợi nhuận thu được là lớn nhất.

Phương pháp giải - Xem chi tiếtGiải bài 2.10 trang 43 Chuyên đề học tập Toán 12 - Kết nối tri thức 1

Giải theo 5 bước giải bài toán tối ưu bằng cách sử dụng đạo hàm.

Lời giải chi tiết

Hàm doanh thu của x đơn vị hàng hóa là: \(R(x) = xp(x) = 1500x - 3{x^2}\)

Hàm lợi nhuận là:

\(\begin{array}{l}P\left( x \right) = R\left( x \right)--C\left( x \right) = 1{\rm{ }}500x--3{x^2}--(18{\rm{ }}000 + 500x--1,6{x^2} + 0,004{x^3})\\ = 1{\rm{ }}500x--3{x^2}--18{\rm{ }}000--500x + 1,6{x^2}--0,004{x^3}\\ = --0,004{x^3}--1,4{x^2} + 1{\rm{ }}000x--18{\rm{ }}000.\end{array}\)

b) Xét hàm lợi nhuận P(x) = – 0,004x3 – 1,4x2 + 1 000x – 18 000 (nghìn đồng) với x ≥ 0.

Ta có P’(x) = –0,012x2 – 2,8x + 1 000.

P’(x) = 0 ⟺ –0,012x2 – 2,8x + 1 000 = 0 ⇔ x ≈ 194,69.

Ta có P(194) = 94 104,064 và P(195) = 94 105,5 nên P(194) < P(105).

Do số đơn vị hàng hóa phải là số nguyên dương nên để lợi nhuận lớn nhất thì mức sản xuất là x = 195 đơn vị hàng hóa.

Giải bài 2.10 trang 43 Chuyên đề học tập Toán 12 - Kết nối tri thức: Tổng quan

Bài 2.10 trang 43 Chuyên đề học tập Toán 12 - Kết nối tri thức thuộc chương trình học Toán 12, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung bài tập 2.10 trang 43

Bài tập 2.10 thường có dạng như sau: Cho một hàm số y = f(x). Yêu cầu học sinh:

  • Tính đạo hàm f'(x).
  • Tìm các điểm cực trị của hàm số.
  • Xác định khoảng đồng biến, nghịch biến của hàm số.
  • Vẽ đồ thị hàm số (nếu cần).

Lời giải chi tiết bài 2.10 trang 43

Để giải bài tập này, chúng ta cần thực hiện các bước sau:

  1. Bước 1: Tính đạo hàm f'(x). Sử dụng các quy tắc tính đạo hàm đã học để tìm đạo hàm của hàm số.
  2. Bước 2: Tìm các điểm cực trị. Giải phương trình f'(x) = 0 để tìm các điểm nghiệm. Sau đó, xét dấu của f'(x) trên các khoảng xác định để xác định các điểm cực đại, cực tiểu.
  3. Bước 3: Xác định khoảng đồng biến, nghịch biến. Dựa vào dấu của f'(x) trên các khoảng xác định, ta có thể xác định khoảng đồng biến (f'(x) > 0) và khoảng nghịch biến (f'(x) < 0) của hàm số.
  4. Bước 4: Vẽ đồ thị hàm số (nếu cần). Sử dụng các thông tin đã tìm được ở các bước trên để vẽ đồ thị hàm số.

Ví dụ minh họa

Giả sử hàm số y = x3 - 3x2 + 2. Ta sẽ giải bài tập 2.10 trang 43 như sau:

  1. Tính đạo hàm: y' = 3x2 - 6x
  2. Tìm điểm cực trị: Giải phương trình 3x2 - 6x = 0, ta được x = 0 và x = 2.
  3. Xác định khoảng đồng biến, nghịch biến:
    • Khi x < 0, y' > 0, hàm số đồng biến.
    • Khi 0 < x < 2, y' < 0, hàm số nghịch biến.
    • Khi x > 2, y' > 0, hàm số đồng biến.

Mẹo giải bài tập

Để giải bài tập 2.10 trang 43 một cách hiệu quả, bạn nên:

  • Nắm vững các quy tắc tính đạo hàm.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng máy tính bỏ túi để kiểm tra lại kết quả.
  • Tham khảo các tài liệu tham khảo, sách giáo khoa và các trang web học tập uy tín.

Tài liệu tham khảo

Bạn có thể tham khảo thêm các tài liệu sau để hiểu rõ hơn về đạo hàm và ứng dụng của đạo hàm:

  • Sách giáo khoa Toán 12 - Kết nối tri thức
  • Các bài giảng trực tuyến về đạo hàm
  • Các trang web học tập uy tín như Tusach.vn

Kết luận

Bài 2.10 trang 43 Chuyên đề học tập Toán 12 - Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm. Hy vọng với lời giải chi tiết và các mẹo giải bài tập trên, các em học sinh sẽ tự tin hơn khi giải quyết bài tập này.

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN