Tusach.vn xin giới thiệu lời giải chi tiết bài 8 trang 24 Chuyên đề học tập Toán 11 Cánh diều. Bài viết này cung cấp đáp án, phương pháp giải và giải thích rõ ràng từng bước để giúp học sinh hiểu sâu kiến thức và tự tin làm bài tập.
Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng, cập nhật và hữu ích nhất cho các em học sinh.
Quan sát Hình 42 và chỉ ra hai phép dời hình (phân biệt) biến mỗi tam giác được tô màu thành tam giác cùng màu với nó.
Đề bài
Quan sát Hình 42 và chỉ ra hai phép dời hình (phân biệt) biến mỗi tam giác được tô màu thành tam giác cùng màu với nó.

Phương pháp giải - Xem chi tiết
Quan sát hình 42 và sử dụng kiến thức về các phép biến hình đã học để làm
Lời giải chi tiết
+) Đặt các điểm như hình vẽ.

Ta thấy đường tròn nhỏ tâm O có các đường kính CD, EF, GH nên O là trung điểm của CD, EF, GH. Đường tròn lớn tâm O có các đường kính MN, LK, IJ nên O là trung điểm của MN, LK, IJ.
Do đó, ta có phép đối xứng tâm O biến các điểm C, M, E, J, G, L, D tương ứng thành các điểm D, N, F, I, H, K, C.
Từ đó suy ra phép đối xứng tâm O biến các tam giác CME, EJG, GLD, FDN, FHI, KHC tương ứng thành các tam giác DNF, FIH, HKC, ECM, EGJ, LGD hay chính là phép đối xứng tâm O biến mỗi tam giác được tô màu thành tam giác cùng màu với nó.
+) Đặt các điểm như hình vẽ:

- Phép tịnh tiến theo vectơ \(\overrightarrow {AB} \) biến các tam giác IAJ, EJC, CGB, AKL, LDF, BDH lần lượt thành các tam giác CBG, E'GC', C'G'B', BDH, HD'F', B'D'H'.
- Phép đối xứng tâm B biến các tam giác CBG, E'GC', C'G'B', BDH, HD'F', B'D'H' lần lượt thành các tam giác HBD, FDL, LKA, BGC, CJE, AJI.
Do đó, ta có phép dời hình F có được bằng cách thực hiện liên tiếp phép tịnh tiến theo vectơ \(\overrightarrow {AB} \) và phép đối xứng tâm B ( \({T_{\overrightarrow {AB} }}\) trước, sau) biến các tam giác IAJ, EJC, CGB, AKL, LDF, BDH lần lượt thành các tam giác HBD, FDL, LKA, BGC, CJE, AJI hay chính là phép dời hình F đó biến mỗi tam giác được tô màu thành tam giác cùng màu với nó.
Bài 8 trang 24 Chuyên đề học tập Toán 11 Cánh diều thuộc chương trình học Toán 11, tập trung vào việc ôn tập và củng cố kiến thức về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các công thức đạo hàm cơ bản, quy tắc tính đạo hàm của hàm số hợp, và đạo hàm của hàm số lượng giác để giải quyết các bài toán cụ thể.
Bài 8 thường bao gồm các dạng bài tập sau:
Dưới đây là hướng dẫn giải chi tiết từng bài tập trong bài 8 trang 24 Chuyên đề học tập Toán 11 Cánh diều:
Giải:
f'(x) = 6x + 2
Giải:
g'(x) = 2cos(2x)
Giải:
h'(x) = 3(x2 + 1)2 * 2x = 6x(x2 + 1)2
Để giải nhanh và hiệu quả các bài tập về đạo hàm, học sinh nên:
Ngoài sách giáo khoa và chuyên đề học tập, học sinh có thể tham khảo thêm các tài liệu sau:
Bài 8 trang 24 Chuyên đề học tập Toán 11 Cánh diều là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với hướng dẫn chi tiết và các mẹo giải nhanh trên, các em học sinh sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong môn Toán.
Tusach.vn luôn đồng hành cùng các em trên con đường chinh phục tri thức. Chúc các em học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập