Tusach.vn xin giới thiệu lời giải chi tiết bài 6 trang 33 Chuyên đề học tập Toán 11 Cánh diều. Bài viết này cung cấp phương pháp giải bài tập một cách dễ hiểu, giúp học sinh nắm vững kiến thức và tự tin làm bài tập.
Chúng tôi luôn cập nhật lời giải mới nhất và chính xác nhất cho các bài tập trong sách Toán 11 Cánh diều.
Chứng minh rằng qua phép vị tự tâm O tỉ số k (k ≠ 0), ảnh của mọi đường thẳng đi qua tâm O là chính nó.
Đề bài
Chứng minh rằng qua phép vị tự tâm O tỉ số k (k ≠ 0), ảnh của mọi đường thẳng đi qua tâm O là chính nó.
Phương pháp giải - Xem chi tiết
Nếu phép vị tự tâm O tỉ số k \(\left( {k \ne 0} \right)\) lần lượt biến 2 điểm A, B thành 2 điểm A’, B’ thì \(A'B' = \left| k \right|AB\)
Lời giải chi tiết
Theo định lí về tính chất của phép vị tự ta có: Phép vị tự tâm O tỉ số k (k ≠ 0) biến đường thẳng thành đường thẳng song song hoặc trùng với nó.
Giả sử qua phép vị tự tâm O tỉ số k (k ≠ 0) biến đường thẳng d thành đường thẳng d' thì d // d' hoặc d ≡ d'.
Mà O cố định, O thuộc đường thẳng d (giả thiết) và phép vi tự tâm O tỉ số k (k ≠ 0) biến điểm O thành chính nó nên O cũng thuộc đường thẳng d'. Do đó, d và d' không thể song song với nhau nên d và d' trùng nhau.
Như vậy, phép vị tự tâm O tỉ số k (k ≠ 0) biến đường thẳng d thành đường thẳng trùng với chính nó.
Nói cách khác: Qua phép vị tự tâm O tỉ số k (k ≠ 0), ảnh của mọi đường thẳng đi qua tâm O là chính nó.
Bài 6 trang 33 Chuyên đề học tập Toán 11 Cánh diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Bài 6 thường bao gồm các dạng bài tập sau:
Để minh họa, chúng ta sẽ cùng giải một ví dụ cụ thể:
Bài toán: Cho hàm số y = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.
Lời giải:
Để giải các bài tập về đạo hàm một cách hiệu quả, bạn nên:
Ngoài sách giáo khoa và sách bài tập, bạn có thể tham khảo thêm các tài liệu sau:
Hy vọng với lời giải chi tiết và các mẹo giải bài tập trên, các bạn học sinh đã có thể tự tin giải bài 6 trang 33 Chuyên đề học tập Toán 11 Cánh diều. Chúc các bạn học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập