Tusach.vn xin giới thiệu lời giải chi tiết bài 10 trang 24 Chuyên đề học tập Toán 11 Cánh diều. Bài viết này cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp học sinh hiểu sâu kiến thức và tự tin làm bài tập.
Chúng tôi luôn cố gắng cung cấp nội dung chất lượng, dễ hiểu và cập nhật nhanh chóng nhất.
Cho hình chữ nhật ABCD có O là giao điểm của hai đường chéo. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Xác định một phép dời hình biến:
Đề bài
Cho hình chữ nhật ABCD có O là giao điểm của hai đường chéo. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Xác định một phép dời hình biến:
a) Tam giác AMQ thành tam giác CPN;
b) Tam giác AMO thành tam giác PCN.
Phương pháp giải - Xem chi tiết
Dựa vào kiến thức:
- Cho điểm O, phép biến hình biến điểm O thành chính nó và biến mỗi điểm \(M \ne O\) thành điểm M’ sao cho O là trung điểm của MM’ được gọi là phép đối xứn tâm O, kí hiệu \({Đ_O}\). Điểm O được gọi là tâm đối xứng.
- Cho đường thẳng d. Phép biến hình biến mỗi điểm M thuộc d thành chính nó, biến mỗi điểm M không thuộc d thành điểm M' sao cho d là đường trung trực của đoạn thẳng MM' được gọi là phép đối xứng trục d. Kí hiệu \({Đ_d}\).
Lời giải chi tiết

a) Vì O là giao hai đường chéo của hình chữ nhật ABCD nên O là trung điểm của AC và BD.
Xét tam giác ABC có M và O lần lượt là trung điểm của AB và AC nên MO là đường trung bình của tam giác ABC, suy ra MO // BC và \(MO = \frac{1}{2}BC\,\,(1)\)
Xét tam giác DBC có O và P lần lượt là trung điểm của BD và DC nên OP là đường trung bình của tam giác DBC, suy ra OP // BC và \(OP = \frac{1}{2}BC\,\,(2)\).
Từ (1) và (2) suy ra O, P, M thẳng hàng và OM = OP nên O là trung điểm của PM.
Chứng minh tương tự ta được O là trung điểm của QN.
Do đó, ta có phép đối xứng tâm O biến các điểm A, M, Q tương ứng thành các điểm C, P, N.
Như vậy, phép đối xứng tâm O biến tam giác AMQ thành tam giác CPN.
b) Ta có QN // AB // CD và AD ⊥ AB nên AD ⊥ QN, mà Q là trung điểm của AD nên QN là đường trung trực của đoạn thẳng AD.
Ta có AD // MP nên QN ⊥ MP, mà O là trung điểm của MP nên QN là đường trung trực của đoạn thẳng MP.
Do đó, ta có phép đối xứng trục QN biến các điểm A, M, O tương ứng thành các điểm D, P, O.
Như vậy, phép đối xứng trục QN biến tam giác AMO thành tam giác DPO (3).
Ta lại có: \(\overrightarrow {DP} = \overrightarrow {ON} = \overrightarrow {PC} \), do đó ta có phép tịnh tiến theo vectơ \(\overrightarrow {ON} \) biến các điểm D, P, O tương ứng thành các điểm P, C, N. Khi đó, phép tịnh tiến theo vectơ \(\overrightarrow {ON} \) biến tam giác DPO thành tam giác PCN (4).
Từ (3) và (4) ta suy ra phép dời hình có được bằng cách thực hiện liên tiếp phép đối xứng trục QN và phép tịnh tiến theo vectơ \(\overrightarrow {ON} \) ( trước, \({T_{\overrightarrow {ON} }}\)sau) biến tam giác AMO thành tam giác PCN.
Bài 10 trang 24 Chuyên đề học tập Toán 11 Cánh diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm như đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Để giải quyết bài 10 trang 24 một cách hiệu quả, chúng ta cần phân tích kỹ đề bài và xác định rõ yêu cầu. Thông thường, bài tập sẽ yêu cầu:
Dưới đây là lời giải chi tiết cho bài 10 trang 24 Chuyên đề học tập Toán 11 Cánh diều. Chúng tôi sẽ trình bày từng bước giải một cách rõ ràng, dễ hiểu, kèm theo các giải thích chi tiết để giúp bạn nắm vững kiến thức.
(Ví dụ: Giả sử bài 10 yêu cầu tìm cực trị của hàm số f(x) = x3 - 3x2 + 2)
f'(x) = 3x2 - 6x
Giải phương trình f'(x) = 0: 3x2 - 6x = 0 => x = 0 hoặc x = 2
Sử dụng dấu của f'(x) để xác định loại cực trị:
Vậy hàm số đạt cực đại tại x = 0 và cực tiểu tại x = 2.
f(0) = 2 (cực đại)
f(2) = -2 (cực tiểu)
Để giải các bài tập về đạo hàm một cách hiệu quả, bạn nên:
Tusach.vn là địa chỉ tin cậy dành cho học sinh, sinh viên và những người yêu thích môn Toán. Chúng tôi cung cấp đầy đủ các tài liệu học tập, bài giải chi tiết, và các mẹo giải bài tập hiệu quả. Hãy truy cập Tusach.vn để khám phá thêm nhiều kiến thức hữu ích và nâng cao kết quả học tập của bạn!
| Chương | Bài | Liên kết |
|---|---|---|
| Chuyên đề 1 | Bài 1 | Link bài 1 |
| Chuyên đề 1 | Bài 2 | Link bài 2 |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập