Tusach.vn xin giới thiệu lời giải chi tiết bài 12 trang 25 Chuyên đề học tập Toán 11 Cánh diều. Bài viết này cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp học sinh hiểu sâu kiến thức và tự tin làm bài tập.
Chúng tôi luôn cố gắng cung cấp nội dung chất lượng, dễ hiểu và cập nhật nhanh chóng nhất.
Quan sát Hình 45. Xác định các phép dời hình biến tam giác ABC thành tam giác A1B1C1, tam giác A1B1C1 thành tam giác A2B2C2, tam giác A2B2C2 thành tam giác A3B3C3.
Đề bài
Quan sát Hình 45. Xác định các phép dời hình biến tam giác ABC thành tam giác A1B1C1, tam giác A1B1C1 thành tam giác A2B2C2, tam giác A2B2C2 thành tam giác A3B3C3.

Phương pháp giải - Xem chi tiết
Quan sát hình vẽ và dựa và các phép biến hình đã học để suy luận
Lời giải chi tiết

+) Ta có: \(\overrightarrow {A{A_1}} = \overrightarrow {B{B_1}} = \overrightarrow {C{C_1}} \) nên ta có phép tịnh tiến theo vectơ \(\overrightarrow {A{A_1}} \) biến các điểm A, B, C tương ứng thành các điểm A1, B1, C1. Do đó, phép tịnh tiến theo vectơ \(\overrightarrow {A{A_1}} \) biến tam giác ABC thành tam giác \({A_1}{B_1}{C_1}.\)
+) Ox là đường trung trực của các đoạn thẳng A1A2, B1B2 và C1C2 nên ta có phép đối xứng trục Ox biến các điểm A1, B1, C1 tương ứng thành các điểm A2, B2, C2. Do đó, phép đối xứng trục Ox biến tam giác A1B1C1 thành tam giác \({A_2}{B_2}{C_2}.\)
+) Ta có: \(\;O{A_2}\; = {\rm{ }}O{A_3},{\rm{ }}O{B_2}\; = {\rm{ }}O{B_3},{\rm{ }}O{C_2}\; = {\rm{ }}O{C_3}\;\) (đường chéo của các hình chữ nhật có cùng kích thước) và \(\widehat {{A_2}O{A_3}} = \widehat {{B_2}O{B_3}} = \widehat {{C_2}O{C_3}} = 90^\circ \), phép quay với góc quay – 90° có chiều quay cùng chiều kim đồng hồ, do đó phép quay tâm O với góc quay – 90° biến các điểm A2, B2, C2 tương ứng thành các điểm A3, B3, C3. Vậy ta có phép quay tâm O với góc quay – 90° biến tam giác A2B2C2 thành tam giác A3B3C3.
Bài 12 trang 25 Chuyên đề học tập Toán 11 Cánh diều thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm như đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Bài 12 thường bao gồm các dạng bài tập sau:
Bài toán: (Giả sử đây là một bài toán cụ thể từ sách) Tìm đạo hàm của hàm số f(x) = x3 - 3x2 + 2.
Lời giải:
Tusach.vn là một nguồn tài liệu học tập uy tín, cung cấp:
Hãy truy cập tusach.vn ngay hôm nay để khám phá thêm nhiều tài liệu học tập hữu ích và nâng cao kết quả học tập của bạn!
| Dạng bài tập | Mục tiêu | Phương pháp giải |
|---|---|---|
| Tính đạo hàm | Vận dụng quy tắc tính đạo hàm | Áp dụng các quy tắc đạo hàm của tổng, hiệu, tích, thương, hàm hợp |
| Tìm cực trị | Xác định điểm cực đại, cực tiểu | Giải phương trình f'(x) = 0 và xét dấu đạo hàm |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập