Tusach.vn xin giới thiệu lời giải chi tiết bài 8 trang 19 Chuyên đề học tập Toán 12 - Cánh diều. Bài viết này sẽ giúp các em học sinh nắm vững kiến thức, hiểu rõ phương pháp giải và tự tin làm bài tập.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật mới nhất.
Giải sử một phòng thí nghiệm phải kiểm tra 120 mẫu máu người (mỗi mẫu của 1 người) để tìm ra các mẫu có chứa kháng thể \(X\). Giả sử xác suất để 1 mẫu máu có kháng thể \(X\) là 2% và các mẫu máu độc lập với nhau. Do tính cấp bách của công tác phòng chống dịch nên thời gian dành cho xét nghiệm là rất ngắn. Thay vì xét nghiệm từng mẫu một, người ta làm như sau: Chia 120 mẫu thành 6 nhóm, mỗi nhóm có 20 mẫu. Lấy một ít máu từ mỗi mấu trong cùng một nhóm trộn với nhau để được 1 mẫu hỗn hợp rồi xét
Đề bài
Giải sử một phòng thí nghiệm phải kiểm tra 120 mẫu máu người (mỗi mẫu của 1 người) để tìm ra các mẫu có chứa kháng thể \(X\). Giả sử xác suất để 1 mẫu máu có kháng thể \(X\) là 2% và các mẫu máu độc lập với nhau.
Do tính cấp bách của công tác phòng chống dịch nên thời gian dành cho xét nghiệm là rất ngắn. Thay vì xét nghiệm từng mẫu một, người ta làm như sau: Chia 120 mẫu thành 6 nhóm, mỗi nhóm có 20 mẫu. Lấy một ít máu từ mỗi mấu trong cùng một nhóm trộn với nhau để được 1 mẫu hỗn hợp rồi xét nghiệm mẫu hỗn hợp đó. Nếu kết quả xét nghiệm mẫu hỗn hợp là âm tính (mẫu hồn hợp không có kháng thể \(X\)) thì coi như cả 20 mẫu trong nhóm đề không có kháng thể \(X\), còn nếu mẫu hỗn hợp có kháng thể \(X\), thì làm tiếp 20 xét nghiệm, mỗi xét nghiệm cho từng mẫu của nhóm.
a) Xác suất để một mẫu máu hỗn hợp có chứa kháng thể \(X\) là bao nhiêu?
b) Gọi \(S\) là tổng số lần phải xét nghiệm cho cả 6 nhóm. Tính kì vọng và phương sai của biễn ngẫu nhiên rời rạc \(S\) (làm trong kết quả đề hàng phần trăm).
c) Chứng minh rằng số lần xét nghiệm trung bình cho 120 mẫu máu đó theo cách ghép nhóm trên là hơn 48.
Phương pháp giải - Xem chi tiết
Lời giải chi tiết
a) Gọi \(Y\) là số mẫu máu trong một hỗn hợp máu chứa kháng thể \(X\). Khi đó \(Y\) là biến ngẫu nhiên rời rạc tuân theo phân phối nhị thức với tham số \(n = 20\) ; \(p = 2\% = 0,02\).
Một hỗn hợp máu có chứa kháng thể \(X\) tức là trong hỗn hợp máu đấy có ít nhất một mẫu máu chứa kháng thể \(X\)
\(\) \({\rm{P(Y}} \ge 1) = 1 - {\rm{P(Y = 0)}} = 1 - C_{20}^0.{(0,02)^0}.{(1 - 0,02)^{20 - 0}} = 1 - {0,98^{20}} \approx 0,3324\)
Vậy xác suất để một mẫu máu hỗn hợp chứa kháng thể \(X\)là 0,3324.
b) Gọi \({X_i}\) là số lần xét nghiệm ở nhóm thứ \(i\) \((i = 1,2,3,4,5,6)\)
Ta có \({\rm{E(}}{{\rm{X}}_{\rm{1}}}{\rm{) = E(}}{{\rm{X}}_{\rm{2}}}{\rm{) = E(}}{{\rm{X}}_{\rm{3}}}{\rm{) = E(}}{{\rm{X}}_{\rm{4}}}{\rm{) = E(}}{{\rm{X}}_{\rm{5}}}{\rm{) = E(}}{{\rm{X}}_{\rm{6}}}{\rm{)}}\)
Vì \({\rm{S = }}{{\rm{X}}_{\rm{1}}}{\rm{ + }}{{\rm{X}}_{\rm{2}}}{\rm{ + }}{{\rm{X}}_{\rm{3}}}{\rm{ + }}{{\rm{X}}_{\rm{4}}}{\rm{ + }}{{\rm{X}}_{\rm{5}}}{\rm{ + }}{{\rm{X}}_{\rm{6}}}\) và các nhóm lại độc lập với nhau nên ta có: \({\rm{E(S) = E(}}{{\rm{X}}_{\rm{1}}}{\rm{) + E(}}{{\rm{X}}_{\rm{2}}}{\rm{) + E(}}{{\rm{X}}_{\rm{3}}}{\rm{) + E(}}{{\rm{X}}_{\rm{4}}}{\rm{) + E(}}{{\rm{X}}_{\rm{5}}}{\rm{) + E(}}{{\rm{X}}_{\rm{6}}}{\rm{) = 6E(}}{{\rm{X}}_{\rm{1}}}{\rm{)}}\)
TH1: Nếu kết quả của mẫu máu hỗn hợp là âm tính thì chỉ cần xét nghiệm 1 lần.
TH2: Nếu kết quả của mẫu máu hỗn hợp là dương tình thì cần xét nghiệm 21 lần tất cả.
Ta có bảng phân bố xác suất:

Do đó ta có \({\rm{E(}}{{\rm{X}}_{\rm{1}}}{\rm{)}} = {1.0,98^{20}} + 21.(1 - {0,98^{20}}) \approx 7,65\)
\({\rm{V(}}{{\rm{X}}_{\rm{1}}}{\rm{)}} = {1^2}{.0,98^{20}} + {21^2}.(1 - {0,98^{20}}) \approx 88,73\)
Vậy \({\rm{E(S)}} = 6.7,65 = 45,9\) và \({\rm{V(S)}} = 6.88,73 = 532,38.\)
c) Vì \({\rm{E(S)}} = 45,9 < 48\) nên số lần xét nghiệm trung bình cho 120 mẫu ghép nhóm trên là nhỏ hơn 48.
Bài 8 trang 19 Chuyên đề học tập Toán 12 - Cánh diều thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về các chủ đề quan trọng như đạo hàm, tích phân, số phức và hình học không gian. Việc nắm vững kiến thức này là vô cùng quan trọng để đạt kết quả tốt trong các kỳ thi sắp tới.
Bài 8 thường bao gồm các dạng bài tập sau:
Dưới đây là lời giải chi tiết từng bài tập trong bài 8 trang 19 Chuyên đề học tập Toán 12 - Cánh diều:
Đề bài: (Ví dụ về đề bài)
Lời giải: (Giải thích chi tiết từng bước giải)
Đề bài: (Ví dụ về đề bài)
Lời giải: (Giải thích chi tiết từng bước giải)
Đề bài: (Ví dụ về đề bài)
Lời giải: (Giải thích chi tiết từng bước giải)
Để giải nhanh và hiệu quả các bài tập trong bài 8, các em có thể áp dụng một số mẹo sau:
Để hiểu sâu hơn về các kiến thức liên quan đến bài 8, các em có thể tham khảo thêm các tài liệu sau:
Hy vọng rằng với lời giải chi tiết và các mẹo giải nhanh mà Tusach.vn cung cấp, các em học sinh sẽ tự tin hơn khi làm bài tập và đạt kết quả tốt trong kỳ thi Toán 12. Chúc các em học tập tốt!
| Dạng bài | Phương pháp giải |
|---|---|
| Tính đạo hàm | Sử dụng công thức đạo hàm, quy tắc đạo hàm |
| Tìm cực trị | Giải phương trình đạo hàm bằng 0, xét dấu đạo hàm |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập