Tusach.vn xin giới thiệu lời giải chi tiết bài 2 trang 18 Chuyên đề học tập Toán 12 - Cánh diều. Bài viết này sẽ giúp học sinh nắm vững kiến thức, hiểu rõ phương pháp giải và tự tin làm bài tập.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12, đáp ứng nhu cầu học tập của học sinh trên toàn quốc.
Một người bắn bia với xác suất bắn trúng là 0,7. a) Giả sử người đó bắn 3 lần liên tiếp một cách độc lập. Tính xác suất có ít nhất một lần bắn trúng bia. b) Giả sử người đó bắn n lần liên tiếp một cách độc lập. Tìm giá trị nhỏ nhất của n sao cho xác suất có ít nhất 1 lần bắ trúng bia trong n lần bắ đó lớn hơn 0,9.
Đề bài
Một người bắn bia với xác suất bắn trúng là 0,7.
a) Giả sử người đó bắn 3 lần liên tiếp một cách độc lập. Tính xác suất có ít nhất một lần bắn trúng bia.
b) Giả sử người đó bắn n lần liên tiếp một cách độc lập. Tìm giá trị nhỏ nhất của n sao cho xác suất có ít nhất 1 lần bắ trúng bia trong n lần bắ đó lớn hơn 0,9.
Phương pháp giải - Xem chi tiết
+) Gọi \(X\) là số lần bắn trúng bia. Khi đó \(X\) là biến ngẫu nhiên rời rạc có phân bố nhị thức với tham số \(n = 3;p = 0,7\).
+) Ta sẽ sử dụng công thức tính xác suất của phân bố nhị thức để tính xác suất yêu cầu. \(\) \(P(X = k) = C_n^k.{p^k}.{p^{n - k}}\)
Ngoài ra sử dụng công thức \(P(X \ge k) = 1 - P(X < k)\)
Lời giải chi tiết
a) Gọi \(X\) là số lần bắn trúng bia. Khi đó \(X\) là biến ngẫu nhiên rời rạc có phân bố nhị thức với tham số \(n = 3;p = 0,7\).
Ta có:\(P(X \ge 1) = 1 - P(X = 0) = 1 - C_3^0.{(0,7)^0}.{(1 - 0,7)^{3 - 0}} = 0,973\)
Vậy xác suất để trong 3 lần bắn có ít nhất 1 lần bắn trúng bia là 0,973.
b) Ta có \(P(X \ge 1) = 1 - P(X = 0) = 1 - C_n^0.{(0,7)^0}.{(1 - 0,7)^{n - 0}} = 1 - {(0,3)^n}\)
Lại có \(P(X \ge 1) > 0,9 \Rightarrow 1 - {(0,3)^n} > 0,9 \Leftrightarrow {(0,3)^n} < 0,1 \Leftrightarrow n > {\log _{0,3}}0,1\)
Từ đó ta có \(n > 1,9\).
Vậy giá trị nhỏ nhất của n là 2.
Bài 2 trang 18 Chuyên đề học tập Toán 12 - Cánh diều thường xoay quanh các chủ đề về đạo hàm, ứng dụng đạo hàm để khảo sát hàm số, hoặc các bài toán liên quan đến tích phân. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các kiến thức cơ bản về đạo hàm, quy tắc tính đạo hàm, và các ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Đề bài: Cho hàm số y = x3 - 3x2 + 2. Tìm cực đại và cực tiểu của hàm số.
Giải:
Khi giải bài tập về đạo hàm và ứng dụng đạo hàm, học sinh cần chú ý:
Tusach.vn là một website cung cấp đầy đủ các tài liệu học tập Toán 12, bao gồm sách giáo khoa, sách bài tập, đề thi và lời giải chi tiết. Chúng tôi cam kết cung cấp cho học sinh những thông tin chính xác, cập nhật và hữu ích nhất để hỗ trợ quá trình học tập.
Hãy truy cập Tusach.vn ngay hôm nay để khám phá thêm nhiều tài liệu học tập Toán 12 hữu ích khác!
| Chủ đề | Liên kết |
|---|---|
| Giải bài tập Toán 12 Cánh diều | https://tusach.vn/toan-12-canh-dieu |
| Chuyên đề học tập Toán 12 | https://tusach.vn/chuyen-de-toan-12 |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập