1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Đề thi học kì 2 Toán 11 - Đề số 5

Đề thi học kì 2 Toán 11 - Đề số 5

Đề thi học kì 2 Toán 11 - Đề số 5

Chào mừng bạn đến với Đề thi học kì 2 Toán 11 - Đề số 5 tại tusach.vn. Đề thi này được biên soạn theo cấu trúc đề thi chính thức của Bộ Giáo dục và Đào tạo, giúp bạn làm quen với dạng đề và rèn luyện kỹ năng giải toán.

Đề thi bao gồm các câu hỏi trắc nghiệm và tự luận, tập trung vào các kiến thức trọng tâm của chương trình Toán 11 học kì 2. Đáp án chi tiết đi kèm sẽ giúp bạn tự đánh giá kết quả và rút kinh nghiệm.

Đề bài

    Phần I. Câu trắc nghiệm nhiều phương án lựa chọn.
    Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
    Câu 1 :

    Cho các số thực \(a,b,\alpha \left( {a > 0;b > 0} \right)\). Mệnh đề nào sau đây đúng?

    • A.
      \({\left( {ab} \right)^\alpha } = {a^\alpha }.{b^\alpha }\)
    • B.
      \({\left( {a - b} \right)^\alpha } = {a^\alpha } - {b^\alpha }\)
    • C.
      \({\left( {\frac{a}{b}} \right)^\alpha } = \frac{{{a^\alpha }}}{{{b^{ - \alpha }}}}\)
    • D.
      \({\left( {a + b} \right)^\alpha } = {a^\alpha } + {b^\alpha }\)
    Câu 2 :

    Cho \({\log _a}b = 3\) và \({\log _a}c = 2\). Tính \(P = {\log _a}\left( {b{c^2}} \right)\)

    • A.
      7.
    • B.
      4.
    • C.
      -1.
    • D.
      0.
    Câu 3 :

    Cho hàm số \(f\left( x \right) = \ln \left( {{x^2} - 2x + 4} \right)\). Tìm các giá trị của \(x\) để \(f'\left( x \right) > 0\)?

    • A.
      \(x \ne 1\)
    • B.
      \(x > 0\)
    • C.
      \(x > 1\)
    • D.
      \(\forall x\)
    Câu 4 :

    Cho \(A\), \(B\) là hai biến cố xung khắc. Đẳng thức nào sau đây đúng?

    • A.
      \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)\)
    • B.
      \(P\left( {A \cup B} \right) = P\left( A \right).P\left( B \right)\)
    • C.
      \(P\left( {A \cup B} \right) = P\left( A \right) - P\left( B \right)\)
    • D.
      \(P\left( {A \cap B} \right) = P\left( A \right) + P\left( B \right)\)
    Câu 5 :

    Gieo một con xúc xắc có sáu mặt, các mặt 1, 2, 3, 4 được sơn đỏ, mặt 5, 6 sơn xanh. Gọi A là biến cố được mặt số lẻ, B là biến cố được mặt sơn màu đỏ. Xác suất của \(A \cap B\) là:

    • A.
      \(\frac{1}{3}.\)
    • B.
      \(\frac{1}{4}.\)
    • C.
      \(\frac{2}{3}.\)
    • D.
      \(\frac{3}{4}.\)
    Câu 6 :

    Cho hàm số \(y = f(x)\) có đồ thị \((C)\) và đạo hàm \(f'(2) = 6.\) Hệ số góc của tiếp tuyến của \((C)\) tại điểm \(M\left( {2;f\left( 2 \right)} \right)\) bằng

    • A.
      2
    • B.
      3
    • C.
      6
    • D.
      12
    Câu 7 :

    Cho hàm số \(f\left( x \right) = {\left( {x + 1} \right)^3}.\) Giá trị của \(f''\left( 1 \right)\) bằng?

    • A.
      12
    • B.
      6
    • C.
      24
    • D.
      4
    Câu 8 :

    Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình chữ nhật và \(SA \bot (ABCD).\) Mệnh đề nào dưới đây đúng ?

    • A.
      \(BC \bot (SAD).\)
    • B.
      \(AB \bot (SAD).\)
    • C.
      \(AC \bot (SAD).\)
    • D.
      \(BD \bot (SAD).\)
    Câu 9 :

    Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a,\)\(SA \bot (ABCD)\) và \(SA = a.\) Góc giữa đường thẳng \(SB\) và mặt phẳng \((ABCD)\) bằng:

    • A.
      \(45^\circ .\)
    • B.
      \(90^\circ .\)
    • C.
      \(30^\circ .\)
    • D.
      \(60^\circ .\)
    Câu 10 :

    Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(SA \bot (ABCD),\)\(AB = a\) và \(SB = \sqrt 2 a.\) Khoảng cách từ điểm \(S\) đến mặt phẳng \((ABCD)\) bằng?

    • A.
      \(a.\)
    • B.
      \(\sqrt 2 a.\)
    • C.
      \(2a.\)
    • D.
      \(\sqrt 3 a.\)
    Câu 11 :

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm I, cạnh bên SA vuông góc với đáy. H,K lần lượt là hình chiếu của A lên SC, SD. Kí hiệu \(d(A,(SCD))\) là khoảng cách giữa điểm A và mặt phẳng\((SCD)\). Khẳng định nào sau đây đúng:

    • A.
      \(d(A,(SCD)) = AC\)
    • B.
      \(d(A,(SCD)) = AK\)
    • C.
      \(d(A,(SCD)) = AH\)
    • D.
      \(d(A,(SCD)) = AD\)
    Câu 12 :

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm I, cạnh bên SA vuông góc với đáy. H,K lần lượt là hình chiếu của A lên SC, SD. Khẳng định nào sau đây đúng:

    • A.
      \(BD \bot (SAC)\)
    • B.
      \(AK \bot (SCD)\)
    • C.
      \(BC \bot (SAC)\)
    • D.
      \(AH \bot (SCD)\)
    Phần II. Câu trắc nghiệm đúng sai
    Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
    Câu 1 :

    Một chất điểm chuyển động có phương trình chuyển động là \(s = s(t) = {t^2} - 2t\) (t được tính bằng giây, s được tính bẳng mét)

    a) Đạo hàm của hàm số \(s(t)\) tại thời điểm \({t_0}\) là: \(2{t_0} - 2\)

    Đúng
    Sai

    b) Vận tốc tức thời của chuyển động tại thời điểm \(t = 5\) là \(8\,(m/s)\)

    Đúng
    Sai

    c) Vận tốc tức thời của chuyển động tại thời điểm \(t = 10\)là \(16(m/s)\)

    Đúng
    Sai

    d) Vận tốc trung bình của chất điểm trong khoảng thời gian từ \(t = 0\) tới \(t = 3s\)là 5 (m/s)

    Đúng
    Sai
    Câu 2 :

    Cho hàm số có đồ thị (C): \(y = f\left( x \right) = {x^2} + x + 1\,\,(C)\)

    a) Không tồn tại phương trình tiếp tuyến của (C) tại giao điểm của \((C)\) với trục Ox

    Đúng
    Sai

    b) Phương trình tiếp tuyến của (C) tại giao điểm của \((C)\) với trục Oy là\(y = x + 1\)

    Đúng
    Sai

    c) Phương trình tiếp tuyến của (C) tại giao điểm của \((C)\) tại giao điểm của \((C)\) với đường thẳng \(y = x + 1\) là: \(y = - 3x + \frac{7}{3}\)

    Đúng
    Sai

    d) Phương trình tiếp tuyến của (C) biết hệ số góc của tiếp tuyến \(k = 3\) là \(y = - 3x - 3\)

    Đúng
    Sai
    Câu 3 :

    Cho lăng trụ tứ giác \(ABCD.A'B'C'D'\). Có đáy là hình vuông và cạnh bên bằng \(2a\). Hình chiếu của \(A'\) trên mặt phẳng \(\left( {ABCD} \right)\) là trung điểm của cạnh \(AD\), đường thẳng \(A'C\) hợp với mặt phẳng \(\left( {ABCD} \right)\)một góc \({45^o}\).

    a) \(A'H \bot AC\)

    Đúng
    Sai

    b) A’H không vuông góc (BB’C’C)

    Đúng
    Sai

    c) \(\left( {A'C,(ABCD)} \right) = \widehat {A'CH}\)

    Đúng
    Sai

    d) Thể tích khối lăng trụ bằng \(4{a^3}\sqrt 5 \)

    Đúng
    Sai
    Câu 4 :

    Một chiếc máy có hai động cơ I và II hoạt động độc lập với nhau.Xác suất để động cơ I và động cơ II chạy tốt lần lượt là 0,8 và 0,7.

    a) Xác suất để cả hai động cơ đều chạy tốt là 0,56

    Đúng
    Sai

    b) Xác suất để cả hai hai động cơ đều chạy không tốt là 0,06

    Đúng
    Sai

    c) Xác suất để có ít nhất một động cơ chạy tốt là 0,06

    Đúng
    Sai

    d) Xác suất để chỉ có 1 động cơ chạy tốt 0,3

    Đúng
    Sai
    Phần III. Câu trắc nghiệm trả lời ngắn.
    Thí sinh trả lời từ câu 1 đến câu 6
    Câu 1 :

    Một chất điểm chuyển động có phương trình \(s\left( t \right) = {t^3} - 3{t^2} - 9t\) (\(t\) tính bằng giây, \(s\) tính bằng mét). Tính gia tốc tức thời tại thời điểm \(t = 3s?\)

    Câu 2 :

    Cho hàm số \(y = \frac{{{x^2} - x + 3}}{{x + 1}}\), biết \(y' = \frac{{a{x^2} + bx + c}}{{{{\left( {x + 1} \right)}^2}}}\). Tính \(a + b + c.\)

    Câu 3 :

    Tìm giới hạn \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin 2x}}{x}\)

    Câu 4 :

    Cho hình chóp \(S.ABCD\)có đáy \(ABCD\)là hình chữ nhật, \(AD = 2a,AB = 3a\). Cạnh bên \(SA\) vuông góc với đáy, \(SA = 2a\). Khoảng cách giữa hai đường thẳng \(AB\)và \(SD\) bằng

    Câu 5 :

    Cho hàm số \(f\left( x \right) = x\left( {x - 1} \right)\left( {x - 2} \right)....\left( {x - 1000} \right).\) Tính \(f'\left( 0 \right).\)

    Câu 6 :

    Tính diện tích của tam giác tạo bởi các trục tọa độ với tiếp tuyến của đồ thị hàm số \(y = \frac{{2{a^2}}}{x}\) (\(a\) là hằng số khác \(0\))

    Lời giải và đáp án

      Phần I. Câu trắc nghiệm nhiều phương án lựa chọn.
      Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
      Câu 1 :

      Cho các số thực \(a,b,\alpha \left( {a > 0;b > 0} \right)\). Mệnh đề nào sau đây đúng?

      • A.
        \({\left( {ab} \right)^\alpha } = {a^\alpha }.{b^\alpha }\)
      • B.
        \({\left( {a - b} \right)^\alpha } = {a^\alpha } - {b^\alpha }\)
      • C.
        \({\left( {\frac{a}{b}} \right)^\alpha } = \frac{{{a^\alpha }}}{{{b^{ - \alpha }}}}\)
      • D.
        \({\left( {a + b} \right)^\alpha } = {a^\alpha } + {b^\alpha }\)

      Đáp án : A

      Phương pháp giải :

      Sử dụng công thức tính lũy thừa

      Lời giải chi tiết :

      \({\left( {ab} \right)^\alpha } = {a^\alpha }.{b^\alpha }\)

      \({\left( {\frac{a}{b}} \right)^\alpha } = \frac{{{a^\alpha }}}{{{b^\alpha }}}\)

      Đáp án A.

      Câu 2 :

      Cho \({\log _a}b = 3\) và \({\log _a}c = 2\). Tính \(P = {\log _a}\left( {b{c^2}} \right)\)

      • A.
        7.
      • B.
        4.
      • C.
        -1.
      • D.
        0.

      Đáp án : A

      Phương pháp giải :

      Sử dụng công thức logarit

      Lời giải chi tiết :

      \(P = {\log _a}\left( {b{c^2}} \right) = {\log _a}b + {\log _a}{c^2} = {\log _a}b + 2{\log _a}c = 3 + 2.2 = 7\)

      Đáp án A.

      Câu 3 :

      Cho hàm số \(f\left( x \right) = \ln \left( {{x^2} - 2x + 4} \right)\). Tìm các giá trị của \(x\) để \(f'\left( x \right) > 0\)?

      • A.
        \(x \ne 1\)
      • B.
        \(x > 0\)
      • C.
        \(x > 1\)
      • D.
        \(\forall x\)

      Đáp án : C

      Phương pháp giải :

      Sử dụng công thức tính đạo hàm của hàm hợp

      Lời giải chi tiết :

      \(\begin{array}{l}f'\left( x \right) = \left[ {\ln \left( {{x^2} - 2x + 4} \right)} \right]' = \frac{{\left( {{x^2} - 2x + 4} \right)'}}{{{x^2} - 2x + 4}} = \frac{{2x - 2}}{{{x^2} - 2x + 4}}\\f'\left( x \right) > 0 \Leftrightarrow \frac{{2x - 2}}{{{x^2} - 2x + 4}} > 0 \Leftrightarrow 2x - 2 > 0 \Leftrightarrow x > 1\end{array}\)

      Đáp án C.

      Câu 4 :

      Cho \(A\), \(B\) là hai biến cố xung khắc. Đẳng thức nào sau đây đúng?

      • A.
        \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)\)
      • B.
        \(P\left( {A \cup B} \right) = P\left( A \right).P\left( B \right)\)
      • C.
        \(P\left( {A \cup B} \right) = P\left( A \right) - P\left( B \right)\)
      • D.
        \(P\left( {A \cap B} \right) = P\left( A \right) + P\left( B \right)\)

      Đáp án : A

      Phương pháp giải :

      Sử dụng công thức cộng xác suất

      Lời giải chi tiết :

      \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)\)

      Đáp án A.

      Câu 5 :

      Gieo một con xúc xắc có sáu mặt, các mặt 1, 2, 3, 4 được sơn đỏ, mặt 5, 6 sơn xanh. Gọi A là biến cố được mặt số lẻ, B là biến cố được mặt sơn màu đỏ. Xác suất của \(A \cap B\) là:

      • A.
        \(\frac{1}{3}.\)
      • B.
        \(\frac{1}{4}.\)
      • C.
        \(\frac{2}{3}.\)
      • D.
        \(\frac{3}{4}.\)

      Đáp án : B

      Phương pháp giải :

      Sử dụng quy tắc xác suất.

      Lời giải chi tiết :

      Xúc xắc có 6 mặt nên khi gieo, có 6 khả năng xảy ra. Như vậy, \(n\left( \Omega \right) = 6\).

      Biến cố \(A \cap B\) là: "Gieo được mặt xuất hiện số lẻ và sơn đỏ" \( \Rightarrow n\left( {A \cap B} \right) = 2\) (mặt số 1 hoặc số 3).

      Vậy xác suất cần tính là \(P(A \cap B) = \frac{2}{6} = \frac{1}{3}\).

      Câu 6 :

      Cho hàm số \(y = f(x)\) có đồ thị \((C)\) và đạo hàm \(f'(2) = 6.\) Hệ số góc của tiếp tuyến của \((C)\) tại điểm \(M\left( {2;f\left( 2 \right)} \right)\) bằng

      • A.
        2
      • B.
        3
      • C.
        6
      • D.
        12

      Đáp án : C

      Phương pháp giải :

      Đạo hàm của hàm số\(y = f(x)\) tại điểm x0 là hệ số góc của tiếp tuyến với đồ thị (C) của hàm số tại điểm \({M_0}({x_0};f({x_0}))\)

      Khi đó phương trình tiếp tuyến của (C) tại điểm M0 là: \(y = f'({x_0})(x - {x_0}) + f({x_0})\)

      Lời giải chi tiết :

      Hệ số góc của tiếp tuyến của \((C)\) tại điểm \(M\left( {2;f\left( 2 \right)} \right)\)là \(f'(2) = 6.\)

      Đáp án C.

      Câu 7 :

      Cho hàm số \(f\left( x \right) = {\left( {x + 1} \right)^3}.\) Giá trị của \(f''\left( 1 \right)\) bằng?

      • A.
        12
      • B.
        6
      • C.
        24
      • D.
        4

      Đáp án : A

      Phương pháp giải :

      Sử dụng công thức tính đạo hàm của hàm hợp

      Lời giải chi tiết :

      \(\begin{array}{l}f'\left( x \right) = \left[ {{{\left( {x + 1} \right)}^3}} \right]' = 3(x + 1)'{\left( {x + 1} \right)^2} = 3{\left( {x + 1} \right)^2}\\f''\left( x \right) = \left[ {3{{\left( {x + 1} \right)}^2}} \right]' = 6(x + 1)'\left( {x + 1} \right) = 6\left( {x + 1} \right)\\f''(1) = 12\end{array}\)

      Đáp án A.

      Câu 8 :

      Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình chữ nhật và \(SA \bot (ABCD).\) Mệnh đề nào dưới đây đúng ?

      • A.
        \(BC \bot (SAD).\)
      • B.
        \(AB \bot (SAD).\)
      • C.
        \(AC \bot (SAD).\)
      • D.
        \(BD \bot (SAD).\)

      Đáp án : B

      Phương pháp giải :

      Sử dụng định lý đường thẳng vuông góc với mặt phẳng

      Lời giải chi tiết :

      Đề thi học kì 2 Toán 11 - Đề số 5 1 1

      a)\(\left\{ \begin{array}{l}BC//AD\\BC \not\subset (SAD),AD \subset (SAD)\end{array} \right. \Rightarrow BC//(SAD)\)

      b)\(\left\{ \begin{array}{l}AB \bot AD\\AB \bot SA\\AD,SA \subset (SAD)\\AD \cap SA\end{array} \right. \Rightarrow AB \bot (SAD)\)

      Đáp án B.

      Câu 9 :

      Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a,\)\(SA \bot (ABCD)\) và \(SA = a.\) Góc giữa đường thẳng \(SB\) và mặt phẳng \((ABCD)\) bằng:

      • A.
        \(45^\circ .\)
      • B.
        \(90^\circ .\)
      • C.
        \(30^\circ .\)
      • D.
        \(60^\circ .\)

      Đáp án : A

      Phương pháp giải :

      Sử dụng phương pháp xác định góc giữa đường thẳng và mặt phẳng

      Lời giải chi tiết :

      Đề thi học kì 2 Toán 11 - Đề số 5 1 2

      Do \(SA \bot (ABCD)\)

      Nên AB là hình chiếu của SA lên mp(ABCD)

      Ta có: \(\left( {SB,(ABCD)} \right) = \left( {SB,AB} \right)\)

      Xét tam giác SAB vuông tại A ta có:

      \(\begin{array}{l}\left( {SB,AB} \right) = \widehat {SBA}\\\tan \widehat {SBA} = \frac{{SA}}{{AB}} = \frac{a}{a} = 1 \Rightarrow \widehat {SBA} = {45^0}\end{array}\)

      Đáp án A.

      Câu 10 :

      Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(SA \bot (ABCD),\)\(AB = a\) và \(SB = \sqrt 2 a.\) Khoảng cách từ điểm \(S\) đến mặt phẳng \((ABCD)\) bằng?

      • A.
        \(a.\)
      • B.
        \(\sqrt 2 a.\)
      • C.
        \(2a.\)
      • D.
        \(\sqrt 3 a.\)

      Đáp án : A

      Phương pháp giải :

      Sử dụng công thức tính khoảng cách từ điểm đến mặt phẳng

      Lời giải chi tiết :

      Đề thi học kì 2 Toán 11 - Đề số 5 1 3

      \(Do\,\,SA \bot (ABCD) \Rightarrow d(S,(ABCD)) = SA\)

      Tam giác SAB vuông tại A nên \(SA = \sqrt {S{B^2} - A{B^2}} = a\)

      Đáp án A.

      Câu 11 :

      Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm I, cạnh bên SA vuông góc với đáy. H,K lần lượt là hình chiếu của A lên SC, SD. Kí hiệu \(d(A,(SCD))\) là khoảng cách giữa điểm A và mặt phẳng\((SCD)\). Khẳng định nào sau đây đúng:

      • A.
        \(d(A,(SCD)) = AC\)
      • B.
        \(d(A,(SCD)) = AK\)
      • C.
        \(d(A,(SCD)) = AH\)
      • D.
        \(d(A,(SCD)) = AD\)

      Đáp án : A

      Phương pháp giải :

      Sử dụng công thức tính khoảng cách từ điểm đến mặt phẳng

      Lời giải chi tiết :

      Đề thi học kì 2 Toán 11 - Đề số 5 1 4

      Ta có:

      \(\begin{array}{l}\left\{ \begin{array}{l}DC \bot AD\\DC \bot SA\\AD,SA \subset (SAD)\\AD \cap SA\end{array} \right. \Rightarrow DC \bot (SAD) \Rightarrow DC \bot AK\\\left\{ \begin{array}{l}AK \bot SD\\AK \bot DC\\SD,DC \subset (SDC)\\SD \cap DC\end{array} \right. \Rightarrow AK \bot (SDC) \Rightarrow d(A,(SCD)) = AK\end{array}\)

      Đáp án A.

      Câu 12 :

      Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm I, cạnh bên SA vuông góc với đáy. H,K lần lượt là hình chiếu của A lên SC, SD. Khẳng định nào sau đây đúng:

      • A.
        \(BD \bot (SAC)\)
      • B.
        \(AK \bot (SCD)\)
      • C.
        \(BC \bot (SAC)\)
      • D.
        \(AH \bot (SCD)\)

      Đáp án : B

      Phương pháp giải :

      Sử dụng định lý đường thẳng vuông góc với mặt phẳng

      Lời giải chi tiết :

      Đề thi học kì 2 Toán 11 - Đề số 5 1 5

      \(\begin{array}{l}\left\{ \begin{array}{l}DC \bot AD\\DC \bot SA\\AD,SA \subset (SAD)\\AD \cap SA\end{array} \right. \Rightarrow DC \bot (SAD) \Rightarrow DC \bot AK\\\left\{ \begin{array}{l}AK \bot SD\\AK \bot DC\\SD,DC \subset (SDC)\\SD \cap DC\end{array} \right. \Rightarrow AK \bot (SDC)\end{array}\)

      Đáp án B.

      Phần II. Câu trắc nghiệm đúng sai
      Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
      Câu 1 :

      Một chất điểm chuyển động có phương trình chuyển động là \(s = s(t) = {t^2} - 2t\) (t được tính bằng giây, s được tính bẳng mét)

      a) Đạo hàm của hàm số \(s(t)\) tại thời điểm \({t_0}\) là: \(2{t_0} - 2\)

      Đúng
      Sai

      b) Vận tốc tức thời của chuyển động tại thời điểm \(t = 5\) là \(8\,(m/s)\)

      Đúng
      Sai

      c) Vận tốc tức thời của chuyển động tại thời điểm \(t = 10\)là \(16(m/s)\)

      Đúng
      Sai

      d) Vận tốc trung bình của chất điểm trong khoảng thời gian từ \(t = 0\) tới \(t = 3s\)là 5 (m/s)

      Đúng
      Sai
      Đáp án

      a) Đạo hàm của hàm số \(s(t)\) tại thời điểm \({t_0}\) là: \(2{t_0} - 2\)

      Đúng
      Sai

      b) Vận tốc tức thời của chuyển động tại thời điểm \(t = 5\) là \(8\,(m/s)\)

      Đúng
      Sai

      c) Vận tốc tức thời của chuyển động tại thời điểm \(t = 10\)là \(16(m/s)\)

      Đúng
      Sai

      d) Vận tốc trung bình của chất điểm trong khoảng thời gian từ \(t = 0\) tới \(t = 3s\)là 5 (m/s)

      Đúng
      Sai
      Phương pháp giải :

      Phương trình vận tốc của chất điểm: \(v(t) = s'(t)\)

      Phương trình gia tốc của chất điểm: \(a(t) = v'(t)\)

      Lời giải chi tiết :

      a) Đạo hàm của hàm số \(s(t)\)tại thời điểm \({t_0}\)

      Ta có:

       \(\begin{array}{l}f'({t_0}) = \mathop {\lim }\limits_{t \to {t_0}} \frac{{f(t) - f({t_0})}}{{t - {t_0}}} = \mathop {\lim }\limits_{t \to {t_0}} \left( {\frac{{{t^2} - 2t - ({t_0}^2 - 2{t_0})}}{{t - {t_0}}}} \right)\\ = \mathop {\lim }\limits_{t \to {t_0}} \left( {\frac{{(t - {t_0})(t + {t_0} - 2)}}{{t - {t_0}}}} \right) = \mathop {\lim }\limits_{t \to {t_0}} \left( {t + {t_0} - 2} \right) = 2{t_0} - 2\end{array}\)

      b) Phương trình vận tốc của chất điểm là: \(v(t) = s' = s'(t) = 2t - 2\)

      Vận tốc tức thời của chuyển động tại thời điểm t = 5 (s) là: \(v(5) = 2.5 - 2 = 8(m.s)\)

      c) Vận tốc tức thời của chuyển động tại thời điểm \(t = 10\)là \(v(10) = 2.10 - 2 = 18\,(m/s)\)

      d) Trong khoảng thời gian từ \(t = 0\) tới \(t = 3s\)thì chất điểm di chuyển được quãng đường: \({3^2} - 2.3 = 3(m)\)

      Suy ra vận tốc trung bình của chất điểm trong khoảng thời gian 3s kể từ thời điểm \(t = 0\) là:

      \(\overline v = \frac{{\Delta s}}{{\Delta t}} = \frac{{3 - 0}}{{3 - 0}} = 1(m/s)\)

      Câu 2 :

      Cho hàm số có đồ thị (C): \(y = f\left( x \right) = {x^2} + x + 1\,\,(C)\)

      a) Không tồn tại phương trình tiếp tuyến của (C) tại giao điểm của \((C)\) với trục Ox

      Đúng
      Sai

      b) Phương trình tiếp tuyến của (C) tại giao điểm của \((C)\) với trục Oy là\(y = x + 1\)

      Đúng
      Sai

      c) Phương trình tiếp tuyến của (C) tại giao điểm của \((C)\) tại giao điểm của \((C)\) với đường thẳng \(y = x + 1\) là: \(y = - 3x + \frac{7}{3}\)

      Đúng
      Sai

      d) Phương trình tiếp tuyến của (C) biết hệ số góc của tiếp tuyến \(k = 3\) là \(y = - 3x - 3\)

      Đúng
      Sai
      Đáp án

      a) Không tồn tại phương trình tiếp tuyến của (C) tại giao điểm của \((C)\) với trục Ox

      Đúng
      Sai

      b) Phương trình tiếp tuyến của (C) tại giao điểm của \((C)\) với trục Oy là\(y = x + 1\)

      Đúng
      Sai

      c) Phương trình tiếp tuyến của (C) tại giao điểm của \((C)\) tại giao điểm của \((C)\) với đường thẳng \(y = x + 1\) là: \(y = - 3x + \frac{7}{3}\)

      Đúng
      Sai

      d) Phương trình tiếp tuyến của (C) biết hệ số góc của tiếp tuyến \(k = 3\) là \(y = - 3x - 3\)

      Đúng
      Sai
      Phương pháp giải :

      Bước 1: Gọi M(x0; f(x0)) là tọa độ tiếp điểm của tiếp tuyến của (C) thì f'(x0) = k

      Bước 2: Giải phương trình f'(x0) = k với ẩn là x0.

      Bước 3:Phương trình tiếp tuyến của (C) có dạng y = k(x – x0) + f(x0).

      Lời giải chi tiết :

      a) Vì \((C)\) không cắt Ox nên không tồn tại tiếp tuyển thỏa mãn yêu cầu bài toán

      b) Tọa độ giao điểm của \((C)\) với trục Oy là: \((0;1)\)

      Suy ra phương trình tiếp tuyến tại giao điểm \((C)\) với trục Ox là:

      \(y = y'(0)(x - 0) + 1 \Leftrightarrow y = x + 1\)

      c) Tọa độ giao điểm của \((C)\) với đường thẳng \(y = x + 1\) là nghiệm của phương trình :

      \({x^2} + x + 1 = x + 1 \Leftrightarrow {x^2} = 0 \Leftrightarrow x = 0\)

      Phương trình tiếp tuyến tại điểm \((0;1)\)là \(y = x + 1\)

      d) Gọi \(M(a;b)\) là tiếp điểm của tiếp tuyến của đồ thị \((C)\) với hệ số góc \(k = - 3\)

      \( \Rightarrow y'(a)) = - 3 \Leftrightarrow 2a + 1 = - 3 \Leftrightarrow a = - 2\)

      Suy ra phương trình tiếp tuyến với hệ số góc \(k = - 3\) là \(y = - 3(x + 2) + 3 \Leftrightarrow y = - 3x - 3\)

      Câu 3 :

      Cho lăng trụ tứ giác \(ABCD.A'B'C'D'\). Có đáy là hình vuông và cạnh bên bằng \(2a\). Hình chiếu của \(A'\) trên mặt phẳng \(\left( {ABCD} \right)\) là trung điểm của cạnh \(AD\), đường thẳng \(A'C\) hợp với mặt phẳng \(\left( {ABCD} \right)\)một góc \({45^o}\).

      a) \(A'H \bot AC\)

      Đúng
      Sai

      b) A’H không vuông góc (BB’C’C)

      Đúng
      Sai

      c) \(\left( {A'C,(ABCD)} \right) = \widehat {A'CH}\)

      Đúng
      Sai

      d) Thể tích khối lăng trụ bằng \(4{a^3}\sqrt 5 \)

      Đúng
      Sai
      Đáp án

      a) \(A'H \bot AC\)

      Đúng
      Sai

      b) A’H không vuông góc (BB’C’C)

      Đúng
      Sai

      c) \(\left( {A'C,(ABCD)} \right) = \widehat {A'CH}\)

      Đúng
      Sai

      d) Thể tích khối lăng trụ bằng \(4{a^3}\sqrt 5 \)

      Đúng
      Sai
      Phương pháp giải :

      Sử dụng định lý đường thẳng vuông góc với mặt phẳng; góc giữa đường thẳng với mặt phẳng

      Lời giải chi tiết :

      Đề thi học kì 2 Toán 11 - Đề số 5 1 6

      a) \(A'H \bot (ABCD) \Rightarrow A'H \bot AC\)

      b) A’H không vuông góc (BB’C’C)

      c)d) Ta có: \(A'H \bot (ABCD)\)

      \( \Rightarrow HC\)là hình chiếu của \(A'C\) trên \(\left( {ABCD} \right)\)

      \( \Rightarrow (\widehat {A'C,(ABCD)}) = (\widehat {A'C,HC}) = \widehat {HCA'} = {45^o}\)

      Áp dụng định lý Pitago cho tam giác HDC vuông tại D ta có:

      \(HC = \sqrt {H{D^2} + D{C^2}} = \sqrt {{a^2} + {{\left( {2a} \right)}^2}} = a\sqrt 5 \)

      \( \Rightarrow A'H = HC.\tan {45^o} = a\sqrt 5 \)

      \( \Rightarrow {V_{ABCD.A'B'C'D'}} = A'H.{S_{ABCD}} = a\sqrt 5 .{\left( {2a} \right)^2} = 4{a^3}\sqrt 5 \).

      Câu 4 :

      Một chiếc máy có hai động cơ I và II hoạt động độc lập với nhau.Xác suất để động cơ I và động cơ II chạy tốt lần lượt là 0,8 và 0,7.

      a) Xác suất để cả hai động cơ đều chạy tốt là 0,56

      Đúng
      Sai

      b) Xác suất để cả hai hai động cơ đều chạy không tốt là 0,06

      Đúng
      Sai

      c) Xác suất để có ít nhất một động cơ chạy tốt là 0,06

      Đúng
      Sai

      d) Xác suất để chỉ có 1 động cơ chạy tốt 0,3

      Đúng
      Sai
      Đáp án

      a) Xác suất để cả hai động cơ đều chạy tốt là 0,56

      Đúng
      Sai

      b) Xác suất để cả hai hai động cơ đều chạy không tốt là 0,06

      Đúng
      Sai

      c) Xác suất để có ít nhất một động cơ chạy tốt là 0,06

      Đúng
      Sai

      d) Xác suất để chỉ có 1 động cơ chạy tốt 0,3

      Đúng
      Sai
      Phương pháp giải :

      Sử dụng công thức nhân xác suất cho hai biến cố độc lập

      Lời giải chi tiết :

      Gọi A là biến cố động cơ I chạy tốt

      B là biến cố động cơ II chạy tốt

      Theo giả thiết: \(P(A) = 0,8;P(B) = 0,7\)

      \( \Rightarrow P(\overline A ) = 1 - 0,8 = 0,2;P(\overline B ) = 1 - 0,7 = 0,3\)

      a)Gọi X là biến cố cả 2 động cơ cùng chạy tốt

      Ta có X=A.B

      Mà 2 biến cố A và B độc lập với nhau nên:

      \(P(X) = P(A).P(B) = 0,8.0,7 = 0,56\)

      b)Gọi Y là biến cố cả 2 động cơ cùng không chạy tốt

      Ta có: \(Y = \overline A .\overline B \)

      Mà 2 biến cố \(\overline A \); \(\overline B \) độc lập với nhau nên: \(P(Y) = P(\overline A ).P(\overline B ) = 0,2.0,3 = 0,06\)

      c) Ta có biến cố: \(\overline Y \) là ít nhất 1 động cơ chạy tốt

      \(P(\overline Y ) = 1 - P(Y) = 1 - 0,06 = 0,94\)

      d)Gọi Z là biến cố chỉ có một động cơ chạy tốt

      \(P(Z) = P(A).P(\overline B ) + P(\overline A ).P(B) = 0,8.0,3 + 0,2.0,7 = 0,38\)

      Phần III. Câu trắc nghiệm trả lời ngắn.
      Thí sinh trả lời từ câu 1 đến câu 6
      Câu 1 :

      Một chất điểm chuyển động có phương trình \(s\left( t \right) = {t^3} - 3{t^2} - 9t\) (\(t\) tính bằng giây, \(s\) tính bằng mét). Tính gia tốc tức thời tại thời điểm \(t = 3s?\)

      Phương pháp giải :

      Phương trình vận tốc của chất điểm: \(v(t) = s'(t)\)

      Phương trình gia tốc của chất điểm: \(a(t) = v'(t)\)

      Lời giải chi tiết :

      Ta có: \(a\left( t \right) = v'\left( t \right) = s''\left( t \right)\)

      \(s\left( t \right) = {t^3} - 3{t^2} - 9t \Rightarrow s'\left( t \right) = 3{t^2} - 6t - 9 \Rightarrow s''\left( t \right) = 6t - 6\)

      Vậy gia tốc tức thời tại thời điểm \(t = 3s\) là \(a\left( 3 \right) = 6.3 - 6 = 12m/{s^2}.\)

      Câu 2 :

      Cho hàm số \(y = \frac{{{x^2} - x + 3}}{{x + 1}}\), biết \(y' = \frac{{a{x^2} + bx + c}}{{{{\left( {x + 1} \right)}^2}}}\). Tính \(a + b + c.\)

      Phương pháp giải :

      Sử dụng công thức tính đạo hàm của hàm hợp

      Lời giải chi tiết :

      \(y = \frac{{{x^2} - x + 3}}{{x + 1}} \Rightarrow y' = \frac{{{x^2} + 2x - 4}}{{{{\left( {x + 1} \right)}^2}}}\)

      Do đó: \(a + b + c = 1 + 2 - 4 = - 1.\)

      Câu 3 :

      Tìm giới hạn \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin 2x}}{x}\)

      Phương pháp giải :

      Sử dụng tính chất: \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{x} = 1\)

      Lời giải chi tiết :

      Ta có: \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin 2x}}{x} = \mathop {\lim }\limits_{x \to 0} \left( {2.\frac{{\sin 2x}}{{2x}}} \right)\)\( = \mathop {\lim }\limits_{x \to 0} 2.\mathop {\lim }\limits_{x \to 0} \frac{{\sin 2x}}{{2x}} = 2.1 = 2\)

      Câu 4 :

      Cho hình chóp \(S.ABCD\)có đáy \(ABCD\)là hình chữ nhật, \(AD = 2a,AB = 3a\). Cạnh bên \(SA\) vuông góc với đáy, \(SA = 2a\). Khoảng cách giữa hai đường thẳng \(AB\)và \(SD\) bằng

      Phương pháp giải :

      Sử dụng phương pháp xác định khoảng cách giữa hai đường thẳng

      Lời giải chi tiết :

      Đề thi học kì 2 Toán 11 - Đề số 5 1 7

      Từ \(A\) kẻ \(AH \bot SD \Rightarrow AH\)là đường vuông góc chung

      Chứng minh: Ta có \(AB \bot AH\,\,\left( {Do\,\,AB \bot \left( {SAD} \right)} \right)\)và \(AH \bot SD \Rightarrow AH\)là đường vuông góc chung

      \( \Rightarrow d\left( {AB,\,\,SD} \right) = AH.\)

      Tính \(AH:\) \(AH = \frac{{AS.AD}}{{\sqrt {A{S^2} + A{D^2}} }} = \frac{{2a.2a}}{{\sqrt {{{\left( {2a} \right)}^2} + {{\left( {2a} \right)}^2}} }} = a\sqrt 2 .\)

      Câu 5 :

      Cho hàm số \(f\left( x \right) = x\left( {x - 1} \right)\left( {x - 2} \right)....\left( {x - 1000} \right).\) Tính \(f'\left( 0 \right).\)

      Phương pháp giải :

      Sử dụng phương pháp tính đạo hàm theo định nghĩa

      Lời giải chi tiết :

      Theo định nghĩa đạo hàm của hàm số tại một điểm:

      \(f'\left( 0 \right) = \mathop {\lim }\limits_{x \to 0} \frac{{f\left( x \right) - f\left( 0 \right)}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{x\left( {x - 1} \right)\left( {x - 2} \right)....\left( {x - 1000} \right)}}{x}\)

      \( = \mathop {\lim }\limits_{x \to 0} \left[ {\left( {x - 1} \right)\left( {x - 2} \right)....\left( {x - 1000} \right)} \right] = \left( { - 1} \right).\left( { - 2} \right).\left( { - 3} \right)....\left( { - 1000} \right) = 1000!\)

      Vậy \(f'\left( 0 \right) = 1000!\)

      Câu 6 :

      Tính diện tích của tam giác tạo bởi các trục tọa độ với tiếp tuyến của đồ thị hàm số \(y = \frac{{2{a^2}}}{x}\) (\(a\) là hằng số khác \(0\))

      Phương pháp giải :

      Lập phương trình diện tích tam giác và tính diện tích theo a

      Lời giải chi tiết :

      Tập xác định: \(D = \mathbb{R}\backslash \left\{ 0 \right\},\,\,\)\(y' = - \frac{{2{a^2}}}{{{x^2}}}.\)

      Tiếp tuyến của đồ thị hàm số \(y = \frac{{2{a^2}}}{x}\) tại điểm \(\left( {{x_0};\frac{{2{a^2}}}{{{x_0}}}} \right)\)là đường thẳng \(\left( d \right)\) có dạng:

      \(y = - \frac{{2{a^2}}}{{{x_0}^2}}.\left( {x - {x_0}} \right) + \frac{{2{a^2}}}{{{x_0}}},\,\,\left( {{x_0} \ne 0,a \ne 0} \right).\)

      + Gọi \(A = d \cap Ox:\)Cho\(y = 0 \Rightarrow - \frac{{2{a^2}}}{{{x_0}^2}}\left( {x - {x_0}} \right) + \frac{{2{a^2}}}{{{x_0}}} = 0 \Leftrightarrow x - {x_0} - {x_0} = 0 \Leftrightarrow x = 2{x_0} \Rightarrow A\left( {2{x_0};0} \right).\)

      + Gọi \(B = d \cap Oy:\) Cho \(x = 0 \Rightarrow y = - \frac{{2{a^2}}}{{{x_0}^2}}.\left( { - {x_0}} \right) + \frac{{2{a^2}}}{{{x_0}}} = \frac{{2{a^2}}}{{{x_0}}} + \frac{{2{a^2}}}{{{x_0}}} = \frac{{4{a^2}}}{{{x_0}}} \Rightarrow B\left( {0;\frac{{4{a^2}}}{{{x_0}}}} \right).\)

      + Diện tích tam giác \(OAB\): \(S = \frac{1}{2}OA.OB = \frac{1}{2}.\left| {2{x_0}} \right|.\left| {\frac{{4{a^2}}}{{{x_0}}}} \right| = 4{a^2}\)

      Đề thi học kì 2 Toán 11 - Đề số 5: Tổng quan và Hướng dẫn Luyện thi

      Học kì 2 Toán 11 là giai đoạn quan trọng, củng cố kiến thức nền tảng và chuẩn bị cho các kỳ thi quan trọng hơn. Việc luyện tập thông qua các đề thi là phương pháp hiệu quả nhất để nắm vững kiến thức và kỹ năng giải toán. Bài viết này sẽ cung cấp thông tin chi tiết về Đề thi học kì 2 Toán 11 - Đề số 5 của tusach.vn, cùng với những lời khuyên hữu ích để bạn đạt kết quả tốt nhất.

      Nội dung Đề thi học kì 2 Toán 11 - Đề số 5

      Đề thi này bao gồm các chủ đề chính sau:

      • Hàm số lượng giác: Các dạng bài tập về xét tính đơn điệu, giá trị lớn nhất, giá trị nhỏ nhất của hàm số lượng giác.
      • Phương trình lượng giác: Giải các phương trình lượng giác cơ bản và nâng cao, sử dụng các công thức lượng giác.
      • Đạo hàm: Tính đạo hàm của hàm số, ứng dụng đạo hàm để giải các bài toán về cực trị, khoảng đơn điệu.
      • Tích phân: Tính tích phân xác định, ứng dụng tích phân để tính diện tích hình phẳng.
      • Số phức: Các phép toán trên số phức, phương trình bậc hai với hệ số thực.

      Cấu trúc Đề thi học kì 2 Toán 11 - Đề số 5

      Đề thi được chia thành hai phần chính:

      1. Phần trắc nghiệm: Khoảng 20 câu hỏi, tập trung vào các kiến thức cơ bản và khả năng vận dụng nhanh.
      2. Phần tự luận: Khoảng 3-5 câu hỏi, yêu cầu trình bày chi tiết các bước giải và lập luận logic.

      Tại sao nên luyện tập với Đề thi học kì 2 Toán 11 - Đề số 5 của tusach.vn?

      • Đề thi được biên soạn bởi đội ngũ giáo viên giàu kinh nghiệm: Đảm bảo tính chính xác và phù hợp với chương trình học.
      • Đáp án chi tiết, dễ hiểu: Giúp bạn tự đánh giá kết quả và rút kinh nghiệm.
      • Giao diện thân thiện, dễ sử dụng: Bạn có thể dễ dàng tải đề thi và xem đáp án trên mọi thiết bị.
      • Miễn phí: Đề thi được cung cấp hoàn toàn miễn phí tại tusach.vn.

      Lời khuyên khi luyện thi học kì 2 Toán 11

      Để đạt kết quả tốt nhất trong kỳ thi học kì 2 Toán 11, bạn nên:

      • Nắm vững kiến thức cơ bản: Đọc kỹ sách giáo khoa, ghi chép đầy đủ các công thức và định lý.
      • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng giải toán.
      • Tìm hiểu các dạng bài tập thường gặp: Phân tích cấu trúc đề thi và tập trung vào các dạng bài tập quan trọng.
      • Sử dụng các tài liệu tham khảo: Tham khảo các đề thi cũ, sách bài tập, và các trang web học tập trực tuyến.
      • Hỏi thầy cô giáo khi gặp khó khăn: Đừng ngần ngại hỏi thầy cô giáo để được giải đáp thắc mắc.

      Bảng so sánh các dạng bài tập thường gặp trong đề thi

      Dạng bài tậpMức độ khóTỷ lệ xuất hiện
      Hàm số lượng giácTrung bình20%
      Phương trình lượng giácKhó25%
      Đạo hàmTrung bình - Khó30%
      Tích phânKhó15%
      Số phứcTrung bình10%

      Tusach.vn hy vọng rằng Đề thi học kì 2 Toán 11 - Đề số 5 sẽ là một công cụ hữu ích giúp bạn ôn tập và chuẩn bị tốt nhất cho kỳ thi sắp tới. Chúc bạn thành công!

      Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

      VỀ TUSACH.VN