Tusach.vn xin giới thiệu Đề thi giữa kì 2 Toán 11 Kết nối tri thức - Đề số 1, được biên soạn bám sát chương trình học và cấu trúc đề thi chính thức. Đề thi này là tài liệu ôn tập lý tưởng giúp học sinh làm quen với dạng đề và rèn luyện kỹ năng giải toán.
Đề thi bao gồm các câu hỏi trắc nghiệm và tự luận, tập trung vào các chủ đề quan trọng của chương trình học kì 2. Học sinh có thể sử dụng đề thi này để tự đánh giá năng lực và chuẩn bị tốt nhất cho kỳ thi sắp tới.
Cho a là số thực dương và m, n là hai số thực tùy ý. Đẳng thức nào sau đây là đúng?
\({\left( {{a^m}} \right)^n} = {a^{m + n}}\)
\({\left( {{a^m}} \right)^n} = {a^{m - n}}\)
\({\left( {{a^m}} \right)^n} = {a^{m.n}}\)
\({\left( {{a^m}} \right)^n} = {a^{\frac{m}{n}}}\)
Chọn đáp án đúng.
Cho n là một số nguyên dương. Với a là số thực tùy ý khác 0 thì:
\({a^{ - n}} = \frac{1}{{{a^n}}}\)
\({a^{1 - n}} = \frac{1}{{{a^n}}}\)
\({a^{\frac{1}{n}}} = \frac{1}{{{a^n}}}\)
Cả A, B, C đều sai
Chọn đáp án đúng:
Rút gọn biểu thức \(P = \frac{{{a^{\sqrt 5 + 1}}.{a^{7 - \sqrt 5 }}}}{{{{\left( {{a^{3 + \sqrt 2 }}} \right)}^{3 - \sqrt 2 }}}}\) (với \(a > 0\)).
Với giá trị nào của a thì \({a^{\sqrt 8 }} < \frac{1}{{{a^{ - 3}}}}\)?
\(a = \frac{3}{4}\)
\(a = \frac{1}{2}\)
\(a = 1\)
\(a = \frac{3}{2}\)
Chọn đáp án đúng.
\({\log _a}b\) xác định khi và chỉ khi:
Chọn đáp án đúng.
Khẳng định nào sau đây đúng?
Giá trị của phép tính \({4^{{{\log }_{\sqrt 2 }}3}}\) là:
Chọn đáp án đúng:
Đồ thị hàm số \(y = {a^x}\left( {a > 0,a \ne 1} \right)\) cắt trục tung tại điểm có tung độ bằng:
Hàm số \(y = {a^x}\left( {a > 0,a \ne 1} \right)\) có tập xác định là:
Hàm số \(y = {\log _2}x\) đồng biến trên khoảng nào sau đây?
Hàm số nào dưới đây là hàm số mũ?
Hàm số nào dưới đây có đồ thị như hình dưới?

Cho hàm số \(f\left( x \right) = {2^x}\). Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của f(x) trên đoạn \(\left[ { - 2;3} \right]\). Khi đó:
Nghiệm của phương trình \({2^x} = 9\) là:
Nghiệm của phương trình \({2^{2x - 1}} = {2^x}\) là:
Phương trình \({\pi ^{x - 3}} = \frac{1}{\pi }\) có nghiệm là:
Nghiệm của phương trình \({\left( {\frac{1}{{16}}} \right)^{x + 1}} = {64^{2x}}\) là:
Tập nghiệm của bất phương trình \({\log _{\frac{2}{3}}}\left( {x - 3} \right) \ge 1\) là:
Phương trình \({\log _3}x + {\log _3}\left( {x + 1} \right) = {\log _3}\left( {5x + 12} \right)\) có bao nhiêu nghiệm?
Tập nghiệm của bất phương trình \({\left( {\frac{1}{{\sqrt 5 }}} \right)^{2x}} < {25^{1 - x}}\) là:
Góc giữa hai đường thẳng a và b có thể bằng:
Trong không gian cho hai đường thẳng a và b vuông góc với nhau. Mệnh đề nào dưới đúng?
Cho hình chóp S. ABCD có đáy ABCD là hình bình hành và \(\widehat {SAB} = {100^0}\). Góc giữa hai đường thẳng SA và CD bằng bao nhiêu độ?
Cho hình chóp S. ABCD có đáy ABCD là hình thoi. Gọi M, N lần lượt là trung điểm của các cạnh SB và SD. Khi đó, góc giữa hai đường thẳng AC và MN bằng bao nhiêu độ?
Có bao nhiêu mặt phẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước?
Chọn đáp án đúng:
Chọn đáp án đúng.
Cho đường thẳng d vuông góc với mặt phẳng (P) và đường thẳng d’ nằm trong mặt phẳng P. Góc giữa hai đường thẳng d và d’ bằng bao nhiêu độ?
Cho hình chóp S. ABCD có ABCD là hình chữ nhật, SA vuông góc với đáy. Đường thẳng BC vuông góc với mặt phẳng nào?
Cho hình chóp S.ABC có \(SA \bot \left( {ABC} \right)\) và H là hình chiếu vuông góc của S lên BC. Chọn khẳng định đúng.
Cho hình lập phương ABCD.A’B’C’D’. Góc giữa hai đường thẳng A’A và D’B’ bằng:
Cho hình chóp S. ABCD có đáy ABCD là hình thang vuông tại A và D, \(SA \bot \left( {ABCD} \right)\). Chọn đáp án đúng.
Cho hàm số: \(y = \frac{1}{{\sqrt {{{\log }_3}\left( {{x^2} - 2x + 3m} \right)} }}\).
a) Với \(m = \frac{1}{3}\), hãy tìm tập xác định của hàm số trên.
b) Tìm tất cả các giá trị của tham số m để hàm số trên có tập xác định là \(\mathbb{R}\).
Cho hình chóp S. ABCD có đáy ABCD là hình vuông và \(SA \bot \left( {ABCD} \right)\). Gọi H, I, K lần lượt là hình chiếu vuông góc của điểm A trên các cạnh SB, SC và SD. Chứng minh rằng:
a) \(SC \bot \left( {AHK} \right)\).
b) \(HK \bot \left( {SAC} \right)\) và \(HK \bot AI\).
Có bao nhiêu số tự nhiên x thỏa mãn bất phương trình \({\rm{lo}}{{\rm{g}}_3}\frac{{{x^2} - 16}}{{343}} < {\rm{lo}}{{\rm{g}}_7}\frac{{\left( {x - 4} \right)\left( {x + 4} \right)}}{{27}}\)?
Cho a là số thực dương và m, n là hai số thực tùy ý. Đẳng thức nào sau đây là đúng?
\({\left( {{a^m}} \right)^n} = {a^{m + n}}\)
\({\left( {{a^m}} \right)^n} = {a^{m - n}}\)
\({\left( {{a^m}} \right)^n} = {a^{m.n}}\)
\({\left( {{a^m}} \right)^n} = {a^{\frac{m}{n}}}\)
Đáp án : C
Áp dụng tính chất của phép tính lũy thừa.
Với a là số thực dương và m, n là hai số thực tùy ý thì \({\left( {{a^m}} \right)^n} = {a^{m.n}}\).
Chọn đáp án đúng.
Cho n là một số nguyên dương. Với a là số thực tùy ý khác 0 thì:
\({a^{ - n}} = \frac{1}{{{a^n}}}\)
\({a^{1 - n}} = \frac{1}{{{a^n}}}\)
\({a^{\frac{1}{n}}} = \frac{1}{{{a^n}}}\)
Cả A, B, C đều sai
Đáp án : A
Cho n là một số nguyên dương. Với a là số thực tùy ý khác 0 thì \({a^{ - n}} = \frac{1}{{{a^n}}}\).
Cho n là một số nguyên dương. Với a là số thực tùy ý khác 0 thì \({a^{ - n}} = \frac{1}{{{a^n}}}\).
Chọn đáp án đúng:
Đáp án : D
\(\sqrt[n]{a}.\sqrt[n]{b} = \sqrt[n]{{ab}}\) (với các biểu thức đều có nghĩa).
Ta có: \(\sqrt[3]{a}.\sqrt[3]{b} = \sqrt[3]{{ab}}\).
Rút gọn biểu thức \(P = \frac{{{a^{\sqrt 5 + 1}}.{a^{7 - \sqrt 5 }}}}{{{{\left( {{a^{3 + \sqrt 2 }}} \right)}^{3 - \sqrt 2 }}}}\) (với \(a > 0\)).
Đáp án : B
\({a^m}.{a^n} = {a^{m + n}};{\left( {{a^m}} \right)^n} = {a^{mn}},{a^m}:{a^n} = {a^{m - n}}\) (a khác 0).
\(P = \frac{{{a^{\sqrt 5 + 1}}.{a^{7 - \sqrt 5 }}}}{{{{\left( {{a^{3 + \sqrt 2 }}} \right)}^{3 - \sqrt 2 }}}} \)
\(= \frac{{{a^{\sqrt 5 + 1 + 7 - \sqrt 5 }}}}{{{a^{\left( {3 + \sqrt 2 } \right)\left( {3 - \sqrt 2 } \right)}}}} = \frac{{{a^8}}}{{{a^7}}} = a\).
Với giá trị nào của a thì \({a^{\sqrt 8 }} < \frac{1}{{{a^{ - 3}}}}\)?
\(a = \frac{3}{4}\)
\(a = \frac{1}{2}\)
\(a = 1\)
\(a = \frac{3}{2}\)
Đáp án : D
Nếu \(a > 1\) thì \({a^\alpha } > {a^\beta } \Leftrightarrow \alpha > \beta \).
Nếu \(0 < a < 1\) thì \({a^\alpha } > {a^\beta } \Leftrightarrow \alpha < \beta \).
Ta có: \(\frac{1}{{{a^{ - 3}}}} = {a^3} = {a^{\sqrt 9 }}\) nên \({a^{\sqrt 8 }} < \frac{1}{{{a^{ - 3}}}} \Leftrightarrow {a^{\sqrt 8 }} < {a^{\sqrt 9 }}\).
Vì \(\sqrt 8 < \sqrt 9 \), mà \({a^{\sqrt 8 }} < {a^{\sqrt 9 }}\) nên \(a > 1\). Do đó, \(a = \frac{3}{2}\) thỏa mãn yêu cầu bài toán.
Chọn đáp án đúng.
\({\log _a}b\) xác định khi và chỉ khi:
Đáp án : C
\({\log _a}b\) xác định khi và chỉ khi \(a > 0,a \ne 1,b > 0\).
\({\log _a}b\) xác định khi và chỉ khi \(a > 0,a \ne 1,b > 0\).
Chọn đáp án đúng.
Đáp án : C
Với a, b là số thực dương và \(a \ne 1\) thì \({\log _a}{a^b} = b\).
\({\log _{1000}}{1000^3} = 3\)
Khẳng định nào sau đây đúng?
Đáp án : B
Lôgarit cơ số 10 của số thực dương b được gọi là lôgarit thập phân của b và kí hiệu logb hay lg b.
Lôgarit cơ số e của số thực dương b được gọi là lôgarit tự nhiên của b và kí hiệu ln b.
Lôgarit cơ số 10 của số thực dương a kí hiệu là \(\log a\).
Giá trị của phép tính \({4^{{{\log }_{\sqrt 2 }}3}}\) là:
Đáp án : A
Với a, b là số thực dương và \(a \ne 1\) thì \({a^{{{\log }_a}b}} = b,{\log _{{a^\alpha }}}b = \frac{1}{\alpha }{\log _a}b;{\log _a}{b^\alpha } = \alpha {\log _a}b\).
\({4^{{{\log }_{\sqrt 2 }}3}} = {2^{2{{\log }_{{2^{\frac{1}{2}}}}}3}} = {2^{4{{\log }_2}3}} = {2^{{{\log }_2}{3^4}}} = 81\)
Chọn đáp án đúng:
Đáp án : B
Với a, b là số thực dương và \(a \ne 1\) thì \({\log _a}{b^\alpha } = \alpha {\log _a}b,\log {\,_a}a = 1\)
Với a là số thực dương, \(a \ne 1\), \(M > 0,N > 0\) thì \({\log _a}\frac{M}{N} = {\log _a}M - {\log _a}N\).
\({\log _5}15 - 2{\log _5}\sqrt 3 = {\log _5}15 - {\log _5}3 = {\log _5}\frac{{15}}{3} = {\log _5}5 = 1\)
Đồ thị hàm số \(y = {a^x}\left( {a > 0,a \ne 1} \right)\) cắt trục tung tại điểm có tung độ bằng:
Đáp án : B
Đồ thị hàm số hàm số \(y = {a^x}\left( {a > 0,a \ne 1} \right)\) cắt trục tung tại điểm có tung độ bằng 1.
Đồ thị hàm số hàm số \(y = {a^x}\left( {a > 0,a \ne 1} \right)\) cắt trục tung tại điểm có tung độ bằng 1.
Hàm số \(y = {a^x}\left( {a > 0,a \ne 1} \right)\) có tập xác định là:
Đáp án : C
Hàm số \(y = {a^x}\left( {a > 0,a \ne 1} \right)\) có tập xác định là \(D = \left( { - \infty ; + \infty } \right)\).
Hàm số \(y = {a^x}\left( {a > 0,a \ne 1} \right)\) có tập xác định là \(D = \left( { - \infty ; + \infty } \right)\).
Hàm số \(y = {\log _2}x\) đồng biến trên khoảng nào sau đây?
Đáp án : D
Nếu \(a > 1\) thì hàm số \(y = {\log _2}x\) đồng biến trên \(\left( {0; + \infty } \right)\).
Vì \(2 > 1\) nên hàm số \(y = {\log _2}x\) đồng biến trên \(\left( {0; + \infty } \right)\). Do đó, hàm số \(y = {\log _2}x\) đồng biến trên \(\left( {1; + \infty } \right)\)
Hàm số nào dưới đây là hàm số mũ?
Đáp án : C
Hàm số \(y = {a^x}\left( {a > 0,a \ne 1} \right)\) được gọi là hàm số mũ cơ số a.
Hàm số \(y = {\left( {\frac{\pi }{2}} \right)^x}\) được gọi là hàm số mũ.
Hàm số nào dưới đây có đồ thị như hình dưới?

Đáp án : C
Xét xem đồ thị hàm số nào đi qua điểm \(\left( { - 1;3} \right)\) và (0;1) thì đó là đồ thị hàm số cần tìm.
Ta thấy đồ thị hàm số \(y = {\left( {\frac{1}{3}} \right)^x}\) đi qua điểm \(\left( { - 1;3} \right)\) và (0;1) nên hàm số \(y = {\left( {\frac{1}{3}} \right)^x}\) là hàm số cần tìm.
Cho hàm số \(f\left( x \right) = {2^x}\). Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của f(x) trên đoạn \(\left[ { - 2;3} \right]\). Khi đó:
Đáp án : A
Cho hàm số \(y = {a^x}\left( {a > 0,a \ne 1} \right)\):
+ Nếu \(a > 1\) thì hàm số đồng biến trên \(\mathbb{R}\).
+ Nếu \(0 < a < 1\) thì hàm số nghịch biến trên \(\mathbb{R}\).
Vì \(2 > 1\) nên hàm số \(f\left( x \right) = {2^x}\) đồng biến trên \(\mathbb{R}\).
Do đó, \(\mathop {\max }\limits_{\left[ { - 2;3} \right]} f\left( x \right) = f\left( 3 \right) = {2^3} = 8;\mathop {\min }\limits_{\left[ { - 2;3} \right]} f\left( x \right) = f\left( { - 2} \right) = {2^{ - 2}} = \frac{1}{4}\)
Suy ra: \(M = 8,m = \frac{1}{4} \Rightarrow Mm = 8.\frac{1}{4} = 2\).
Nghiệm của phương trình \({2^x} = 9\) là:
Đáp án : B
Cho phương trình \({a^x} = b\left( {a > 0,a \ne 1} \right)\):
+ Nếu \(b \le 0\) thì phương trình vô nghiệm.
+ Nếu \(b > 0\) thì phương trình có nghiệm duy nhất \(x = {\log _a}b\).
\({2^x} = 9 \Leftrightarrow x = {\log _2}9\)
Vậy phương trình có nghiệm là \(x = {\log _2}9\).
Nghiệm của phương trình \({2^{2x - 1}} = {2^x}\) là:
Đáp án : D
\({a^{u\left( x \right)}} = {a^{v\left( x \right)}} \Leftrightarrow u\left( x \right) = v\left( x \right)\)
\({2^{2x - 1}} = {2^x} \Leftrightarrow 2x - 1 = x \Leftrightarrow x = 1\)
Vậy phương trình đã cho có nghiệm \(x = 1\)
Phương trình \({\pi ^{x - 3}} = \frac{1}{\pi }\) có nghiệm là:
Đáp án : B
\({a^{u\left( x \right)}} = {a^{v\left( x \right)}} \Leftrightarrow u\left( x \right) = v\left( x \right)\)
\({\pi ^{x - 3}} = \frac{1}{\pi } \Leftrightarrow {\pi ^{x - 3}} = {\pi ^{ - 1}} \Leftrightarrow x - 3 = - 1 \Leftrightarrow x = 2\)
Vậy phương trình có nghiệm \(x = 2\).
Nghiệm của phương trình \({\left( {\frac{1}{{16}}} \right)^{x + 1}} = {64^{2x}}\) là:
Đáp án : A
\({a^{u\left( x \right)}} = {a^{v\left( x \right)}} \Leftrightarrow u\left( x \right) = v\left( x \right)\)
\({\left( {\frac{1}{{16}}} \right)^{x + 1}} = {64^{2x}} \Leftrightarrow {4^{ - 2\left( {x + 1} \right)}} = {4^{3.2x}} \Leftrightarrow - 2x - 2 = 6x \Leftrightarrow 8x = - 2 \Leftrightarrow x = \frac{{ - 1}}{4}\)
Tập nghiệm của bất phương trình \({\log _{\frac{2}{3}}}\left( {x - 3} \right) \ge 1\) là:
Đáp án : B
Nếu \(0 < a < 1\) thì \({\log _a}u\left( x \right) > {\log _a}v\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}u\left( x \right) > 0\\u\left( x \right) \le v\left( x \right)\end{array} \right.\).
\({\log _{\frac{2}{3}}}\left( {x - 3} \right) \ge 1 \Leftrightarrow {\log _{\frac{2}{3}}}\left( {x - 3} \right) \ge {\log _{\frac{2}{3}}}\frac{2}{3} \Leftrightarrow \left\{ \begin{array}{l}x - 3 > 0\\x - 3 \le \frac{2}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > 3\\x \le \frac{{11}}{3}\end{array} \right.\)
Do đó, tập nghiệm của bất phương trình là: \(S = \left( {3;\frac{{11}}{3}} \right]\).
Phương trình \({\log _3}x + {\log _3}\left( {x + 1} \right) = {\log _3}\left( {5x + 12} \right)\) có bao nhiêu nghiệm?
Đáp án : B
Với \(a > 0,a \ne 1\) thì \({\log _a}u\left( x \right) = {\log _a}v\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}u\left( x \right) > 0\\u\left( x \right) = v\left( x \right)\end{array} \right.\) (có thể thay \(u\left( x \right) > 0\) bằng \(v\left( x \right) > 0\))
Điều kiện: \(x > 0\)
\({\log _3}x + {\log _3}\left( {x + 1} \right) = {\log _3}\left( {5x + 12} \right) \Leftrightarrow {\log _3}x\left( {x + 1} \right) = {\log _3}\left( {5x + 12} \right)\)
\( \Leftrightarrow {x^2} + x = 5x + 12 \Leftrightarrow {x^2} - 4x - 12 = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 2\left( L \right)\\x = 6\left( {TM} \right)\end{array} \right.\)
Vậy phương trình đã cho có một nghiệm là \(x = 6\)
Tập nghiệm của bất phương trình \({\left( {\frac{1}{{\sqrt 5 }}} \right)^{2x}} < {25^{1 - x}}\) là:
Đáp án : D
Với \(a > 1\) thì \({a^{u\left( x \right)}} > {a^{v\left( x \right)}} \Leftrightarrow u\left( x \right) > v\left( x \right)\)
\({\left( {\frac{1}{{\sqrt 5 }}} \right)^{2x}} < {25^{1 - x}} \Leftrightarrow {5^{\frac{{ - 2x}}{2}}} < {5^{2\left( {1 - x} \right)}} \Leftrightarrow - x < 2 - 2x\left( {do\;5 > 1} \right) \Leftrightarrow x < 2\)
Vậy tập nghiệm của bất phương trình đã cho là: \(S = \left( { - \infty ;2} \right)\).
Góc giữa hai đường thẳng a và b có thể bằng:
Đáp án : C
Góc giữa hai đường thẳng có số đo không vượt quá 900.
Vì góc giữa hai đường thẳng có số đo không vượt quá 900 nên góc giữa hai đường thẳng có thể bằng 900.
Trong không gian cho hai đường thẳng a và b vuông góc với nhau. Mệnh đề nào dưới đúng?
Đáp án : D
Hai đường thẳng vuông góc với nhau nếu góc giữa chúng bằng \({90^0}\).
Trong không gian cho hai đường thẳng a và b vuông góc với nhau thì góc giữa chúng bằng \({90^0}\).
Cho hình chóp S. ABCD có đáy ABCD là hình bình hành và \(\widehat {SAB} = {100^0}\). Góc giữa hai đường thẳng SA và CD bằng bao nhiêu độ?
Đáp án : C
+ Góc giữa hai đường thẳng a và b trong không gian là góc giữa hai đường thẳng a’ và b’ cùng đi qua một điểm O và lần lượt song song (hoặc trùng) với a và b, kí hiệu \(\left( {a,b} \right)\) hoặc \(\widehat {\left( {a;b} \right)}\).
+ Góc giữa hai đường thẳng không vượt quá \({90^0}\).

Vì ABCD là hình bình hành nên \(AB//CD\)
Do đó, \(\left( {SA,CD} \right) = \left( {SA,AB} \right) = {180^0} - \widehat {SAB} = {80^0}\)
Cho hình chóp S. ABCD có đáy ABCD là hình thoi. Gọi M, N lần lượt là trung điểm của các cạnh SB và SD. Khi đó, góc giữa hai đường thẳng AC và MN bằng bao nhiêu độ?
Đáp án : B
Nếu một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó vuông góc với đường thẳng còn lại.

Vì M, N lần lượt là trung điểm của các cạnh SB và SD nên MN là đường trung bình của tam giác SBD, do đó, MN//BD.
Vì ABCD là hình thoi nên \(AC \bot BD\)
Vì \(AC \bot BD\), MN//BD nên \(AC \bot MN \Rightarrow \left( {AC,MN} \right) = {90^0}\).
Có bao nhiêu mặt phẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước?
Đáp án : B
Có duy nhất một mặt phẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước.
Có duy nhất một mặt phẳng đi qua một điểm cho trước và vuông góc với một đường thẳng cho trước.
Chọn đáp án đúng:
Đáp án : A
Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau.
Hai đường thẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau.
Chọn đáp án đúng.
Đáp án : C
Có duy nhất một đường thẳng đi qua một điểm cho trước và vuông góc với một mặt phẳng cho trước.
Có duy nhất một đường thẳng cùng đi qua một điểm cho trước và vuông góc với một mặt phẳng cho trước.
Cho đường thẳng d vuông góc với mặt phẳng (P) và đường thẳng d’ nằm trong mặt phẳng P. Góc giữa hai đường thẳng d và d’ bằng bao nhiêu độ?
Đáp án : D
Nếu một đường thẳng vuông góc với một mặt phẳng thì nó vuông góc với mọi đường thẳng nằm trong mặt phẳng đó.
Vì đường thẳng d vuông góc với mặt phẳng (P) và đường thẳng d’ nằm trong mặt phẳng P nên \(d \bot d' \Rightarrow \left( {d,d'} \right) = {90^0}\)
Cho hình chóp S. ABCD có ABCD là hình chữ nhật, SA vuông góc với đáy. Đường thẳng BC vuông góc với mặt phẳng nào?
Đáp án : D
+ Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b cùng nằm trong mặt phẳng (P) thì \(d \bot \left( P \right)\).
+ Nếu một đường thẳng vuông góc với một mặt phẳng thì nó vuông góc với mọi đường thẳng nằm trong mặt phẳng đó.

Vì \(SA \bot \left( {ABCD} \right),BC \subset \left( {ABCD} \right) \Rightarrow SA \bot BC\)
Mà ABCD là hình chữ nhật nên \(BC \bot AB\)
Ta có: \(SA \bot BC,BC \bot AB,\) AB và SA cắt nhau tại A và nằm trong mặt phẳng (SAB).
Do đó, \(BC \bot \left( {SAB} \right)\)
Cho hình chóp S.ABC có \(SA \bot \left( {ABC} \right)\) và H là hình chiếu vuông góc của S lên BC. Chọn khẳng định đúng.
Đáp án : B
+ Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b cùng nằm trong mặt phẳng (P) thì \(d \bot \left( P \right)\).
+ Nếu một đường thẳng vuông góc với một mặt phẳng thì nó vuông góc với mọi đường thẳng nằm trong mặt phẳng đó.

Vì \(SA \bot \left( {ABC} \right),BC \subset \left( {ABC} \right) \Rightarrow SA \bot BC\), mà \(BC \bot SH\) và SA và SH cắt nhau tại S và nằm trong mặt phẳng (SAH) nên \(BC \bot \left( {SAH} \right)\).
Lại có: \(AH \subset \left( {SAH} \right)\) nên \(BC \bot AH\).
Cho hình lập phương ABCD.A’B’C’D’. Góc giữa hai đường thẳng A’A và D’B’ bằng:
Đáp án : C
Nếu một đường thẳng vuông góc với một mặt phẳng thì nó vuông góc với mọi đường thẳng nằm trong mặt phẳng đó.

Vì ABCD.A’B’C’D’ là hình lập phương nên \(AA' \bot \left( {A'B'C'D'} \right)\), mà \(B'D' \subset \left( {A'B'C'D'} \right)\) nên \(AA' \bot B'D'\). Do đó, góc giữa hai đường thẳng A’A và D’B’ bằng \({90^0}\).
Cho hình chóp S. ABCD có đáy ABCD là hình thang vuông tại A và D, \(SA \bot \left( {ABCD} \right)\). Chọn đáp án đúng.
Đáp án : A
+ Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b cùng nằm trong mặt phẳng (P) thì \(d \bot \left( P \right)\).
+ Nếu một đường thẳng vuông góc với một mặt phẳng thì nó vuông góc với mọi đường thẳng nằm trong mặt phẳng đó.

Vì \(SA \bot \left( {ABCD} \right),AB \subset \left( {ABCD} \right) \Rightarrow SA \bot AB\).
Vì ABCD là hình thang vuông tại A nên \(AB \bot AD\).
Ta có: \(AB \bot AD\), \(SA \bot AB\) và SA và AD cắt nhau tại A và nằm trong mặt phẳng (SAD)
Do đó, \(AB \bot \left( {SAD} \right) \Rightarrow AB \bot SD\). Suy ra, \(\left( {AB,SD} \right) = {90^0}\).
Cho hàm số: \(y = \frac{1}{{\sqrt {{{\log }_3}\left( {{x^2} - 2x + 3m} \right)} }}\).
a) Với \(m = \frac{1}{3}\), hãy tìm tập xác định của hàm số trên.
b) Tìm tất cả các giá trị của tham số m để hàm số trên có tập xác định là \(\mathbb{R}\).
+ Hàm số có dạng \(y = \frac{1}{{\sqrt {u\left( x \right)} }}\) xác định khi \(u\left( x \right) > 0\).
+ Hàm \(y = {\log _a}u\left( x \right)\left( {a > 0,a \ne 1} \right)\) xác định khi \(u\left( x \right) > 0\).
a) Với \(m = \frac{1}{3}\) ta có: \(y = \frac{1}{{\sqrt {{{\log }_3}\left( {{x^2} - 2x + 1} \right)} }}\).
Hàm số \(y = \frac{1}{{\sqrt {{{\log }_3}\left( {{x^2} - 2x + 1} \right)} }}\) xác định khi \({\log _3}\left( {{x^2} - 2x + 1} \right) > 0 \Leftrightarrow {x^2} - 2x + 1 > 1 \Leftrightarrow {x^2} - 2x > 0 \Leftrightarrow \left[ \begin{array}{l}x > 2\\x < 0\end{array} \right.\)
Vậy với \(m = \frac{1}{3}\) thì tập xác định của hàm số là: \(D = \left( { - \infty ;0} \right) \cup \left( {2; + \infty } \right)\).
b) Hàm số \(y = \frac{1}{{\sqrt {{{\log }_3}\left( {{x^2} - 2x + 3m} \right)} }}\) có tập xác định là \(\mathbb{R}\) khi và chỉ khi \({\log _3}\left( {{x^2} - 2x + 3m} \right) > 0\) với mọi \(x \in \mathbb{R}\)
\( \Leftrightarrow {x^2} - 2x + 3m > 1\) với mọi \(x \in \mathbb{R}\)
\( \Leftrightarrow {x^2} - 2x + 3m - 1 > 0\) với mọi \(x \in \mathbb{R}\)
\( \Leftrightarrow \left\{ \begin{array}{l}1 > 0\\\Delta ' < 0\end{array} \right. \Leftrightarrow {\left( { - 1} \right)^2} - 3m + 1 < 0 \Leftrightarrow m > \frac{2}{3}\)
Vậy với \(m > \frac{2}{3}\) thì hàm số \(y = \frac{1}{{\sqrt {{{\log }_3}\left( {{x^2} - 2x + 3m} \right)} }}\) có tập xác định là \(\mathbb{R}\).
Cho hình chóp S. ABCD có đáy ABCD là hình vuông và \(SA \bot \left( {ABCD} \right)\). Gọi H, I, K lần lượt là hình chiếu vuông góc của điểm A trên các cạnh SB, SC và SD. Chứng minh rằng:
a) \(SC \bot \left( {AHK} \right)\).
b) \(HK \bot \left( {SAC} \right)\) và \(HK \bot AI\).
+ Nếu đường thẳng d vuông góc với hai đường thẳng cắt nhau a và b cùng nằm trong mặt phẳng (P) thì \(d \bot \left( P \right)\).
+ Nếu một đường thẳng vuông góc với một mặt phẳng thì nó vuông góc với mọi đường thẳng nằm trong mặt phẳng đó.

a) Vì \(SA \bot \left( {ABCD} \right),DC \subset \left( {ABCD} \right) \Rightarrow SA \bot DC\)
Vì ABCD là hình vuông nên \(DC \bot AD\).
Mà SA và AD cắt nhau tại A và nằm trong mặt phẳng (SAD). Do đó, \(DC \bot \left( {SAD} \right)\)
Lại có: \(AK \subset \left( {SAD} \right) \Rightarrow DC \bot AK\). Mặt khác, \(AK \bot SD \Rightarrow AK \bot \left( {SDC} \right) \Rightarrow AK \bot SC\)
Vì \(SA \bot \left( {ABCD} \right),BC \subset \left( {ABCD} \right) \Rightarrow SA \bot BC\)
Vì ABCD là hình vuông nên \(BC \bot AB\).
Mà SA và AB cắt nhau tại A và nằm trong mặt phẳng (SAB). Do đó, \(BC \bot \left( {SAB} \right)\)
Lại có: \(AH \subset \left( {SAB} \right) \Rightarrow BC \bot AH\). Mặt khác, \(AH \bot SB \Rightarrow AH \bot \left( {SBC} \right) \Rightarrow AH \bot SC\)
Ta có: \(AK \bot SC\), \(AH \bot SC\) và AK và AH cắt nhau tại A nằm trong mặt phẳng (AHK) nên \(SC \bot \left( {AHK} \right)\).
b) Ta có: \(SA \bot \left( {ABCD} \right) \Rightarrow \left\{ \begin{array}{l}SA \bot AB\\SA \bot AD\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\widehat {SAB} = {90^0}\\\widehat {SAD} = {90^0}\end{array} \right.\)
Tam giác SAB và tam giác SAD có: SA là cạnh chung, \(\widehat {SAB} = \widehat {SAD} = {90^0}\), \(AB = AD\).
Do đó, \(\Delta SAB = \Delta SAD\left( {c.g.c} \right) \Rightarrow SB = SD\), \(SH = SK\).
Suy ra: \(\frac{{SH}}{{SB}} = \frac{{SK}}{{SD}}\). Do đó, HK//BD (1)
Vì ABCD là hình vuông nên \(AC \bot BD\).
Vì \(SA \bot \left( {ABCD} \right),DB \subset \left( {ABCD} \right) \Rightarrow SA \bot DB\)
Mà SA và AC cắt nhau tại A và nằm trong mặt phẳng (SAC) nên \(DB \bot \left( {SAC} \right)\) (2)
Từ (1) và (2) ta có: \(HK \bot \left( {SAC} \right)\). Mà \(AI \subset \left( {SAC} \right)\), suy ra \(HK \bot AI\).
Có bao nhiêu số tự nhiên x thỏa mãn bất phương trình \({\rm{lo}}{{\rm{g}}_3}\frac{{{x^2} - 16}}{{343}} < {\rm{lo}}{{\rm{g}}_7}\frac{{\left( {x - 4} \right)\left( {x + 4} \right)}}{{27}}\)?
Nếu \(a > 1\) thì \({\log _a}u\left( x \right) < {\log _a}v\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}u\left( x \right) > 0\\u\left( x \right) < v\left( x \right)\end{array} \right.\).
TXĐ: \(D = \left( { - \infty ; - 4} \right) \cup \left( {4; + \infty } \right)\).
Ta có: \({\rm{lo}}{{\rm{g}}_3}\frac{{{x^2} - 16}}{{343}} < {\rm{lo}}{{\rm{g}}_7}\frac{{\left( {x - 4} \right)\left( {x + 4} \right)}}{{27}}\)
\(\begin{array}{l} \Leftrightarrow {\rm{lo}}{{\rm{g}}_3}\frac{{{x^2} - 16}}{{343}} < {\rm{lo}}{{\rm{g}}_7}\frac{{{x^2} - 16}}{{27}}\\ \Leftrightarrow {\rm{lo}}{{\rm{g}}_3}7.\left[ {{\rm{lo}}{{\rm{g}}_7}\left( {{x^2} - 16} \right) - 3} \right] < {\rm{lo}}{{\rm{g}}_7}\left( {{x^2} - 16} \right) - 3{\rm{lo}}{{\rm{g}}_7}3\\ \Leftrightarrow \left( {{\rm{lo}}{{\rm{g}}_3}7 - 1} \right){\rm{.lo}}{{\rm{g}}_7}\left( {{x^2} - 16} \right) < 3{\rm{lo}}{{\rm{g}}_3}7 - 3{\rm{lo}}{{\rm{g}}_7}3\\ \Leftrightarrow {\log _7}\left( {{x^2} - 16} \right) < \frac{{3\left( {{{\log }_3}7 - {{\log }_7}3} \right)}}{{{{\log }_3}7 - 1}}\end{array}\)
\( \Leftrightarrow {\log _7}\left( {{x^2} - 16} \right) < \frac{{3\left( {{{\log }_3}7 - \frac{1}{{{{\log }_3}7}}} \right)}}{{{{\log }_3}7 - 1}}\)\( \Leftrightarrow {\log _7}\left( {{x^2} - 16} \right) < \frac{{3\left( {{{\log }_3}7 + 1} \right)}}{{{{\log }_3}7}}\)
\(\begin{array}{l} \Leftrightarrow {\log _7}\left( {{x^2} - 16} \right) < 3\left( {1 + {{\log }_7}3} \right)\\ \Leftrightarrow {\log _7}\left( {{x^2} - 16} \right) < {\log _7}{21^3}\end{array}\)
\( \Leftrightarrow {x^2} - 16 < {21^3} \Leftrightarrow - \sqrt {9277} < x < \sqrt {9277} \)
Kết hợp với điều kiện xác định ta có: \(\left[ \begin{array}{l} - \sqrt {9277} < x < - 4\\4 < x < \sqrt {9277} \end{array} \right.\)
Vì x là số tự nhiên nên \(x \in \left\{ {5;6;7;...;96} \right\}\).
Kỳ thi giữa học kỳ 2 Toán 11 đóng vai trò quan trọng trong việc đánh giá quá trình học tập của học sinh. Đề thi giữa kì 2 Toán 11 Kết nối tri thức - Đề số 1 do tusach.vn cung cấp là một công cụ hữu ích giúp học sinh ôn luyện và làm quen với cấu trúc đề thi thực tế.
Đề thi thường bao gồm hai phần chính:
Để đạt kết quả tốt nhất, học sinh nên:
Tusach.vn cung cấp đề thi giữa kì 2 Toán 11 Kết nối tri thức - Đề số 1 cùng với đáp án chi tiết. Học sinh có thể tải đề thi miễn phí về máy tính hoặc điện thoại để luyện tập. Ngoài ra, chúng tôi còn cung cấp nhiều đề thi khác với các mức độ khó khác nhau để đáp ứng nhu cầu ôn tập của mọi học sinh.
Hãy dành thời gian ôn tập kỹ lưỡng và luyện tập thường xuyên với các đề thi khác nhau. Chúc các em học sinh đạt kết quả cao trong kỳ thi giữa học kỳ 2!
| Chủ đề | Mức độ quan trọng |
|---|---|
| Phương trình | Cao |
| Vectơ | Trung bình |
| Hàm số bậc hai | Cao |
| Nguồn: tusach.vn | |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập