1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Đề thi học kì 1 Toán 9 Kết nối tri thức - Đề số 5

Đề thi học kì 1 Toán 9 Kết nối tri thức - Đề số 5

Đề thi học kì 1 Toán 9 Kết nối tri thức - Đề số 5

Tusach.vn xin giới thiệu Đề thi học kì 1 Toán 9 Kết nối tri thức - Đề số 5, một tài liệu ôn tập quan trọng dành cho học sinh lớp 9. Đề thi này được biên soạn bám sát chương trình học, giúp các em làm quen với cấu trúc đề thi và rèn luyện kỹ năng giải toán.

Đề thi bao gồm các dạng bài tập khác nhau, từ trắc nghiệm đến tự luận, bao phủ các chủ đề chính trong chương trình học kì 1. Đi kèm với đề thi là đáp án chi tiết, giúp học sinh tự kiểm tra và đánh giá kết quả học tập.

Đề bài

    Phần I. Câu hỏi trắc nghiệm nhiều phương án lựa chọn
    Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
    Câu 1 :

    Phương trình \(2x + y = 1\) kết hợp với phương trình nào dưới đây để được một hệ phương trình bậc nhất hai ẩn?

    • A.

      \(2x + 3{y^2} = 0\).

    • B.

      \(xy - x = 1\).

    • C.

      \(3x + 2{y^3} = 1\).

    • D.

      \(3x - y = 5\).

    Câu 2 :

    Điều kiện xác định của phương trình \(\frac{{4x - 5}}{{x - 1}} = 2x + \frac{1}{{{x^2}}}\) là

    • A.

      \(x \ne 1;x \ne 0\).

    • B.

      \(x \ne - 1\) và \(x \ne 0\).

    • C.

      \(x \ne 1\).

    • D.

      \(x \ne 0\).

    Câu 3 :

    Bất phương trình \( - x - 2 > 4\), phép biến đổi nào sau đây là đúng?

    • A.

      \(x > 4 + 2\).

    • B.

      \(x < 4 - 2\).

    • C.

      \(x < - 4 - 2\).

    • D.

      \(x < - 4 + 2\).

    Câu 4 :

    Cho số thực \(a > 0\). Số nào sau đây là căn bậc hai số học của a?

    • A.

      \(2\sqrt a \).

    • B.

      \(\sqrt a \).

    • C.

      \(\sqrt {2a} \).

    • D.

      \( - \sqrt a \).

    Câu 5 :

    Rút gọn biểu thức \(\frac{2}{5}.\sqrt {25} - \frac{9}{2}.\sqrt {\frac{{16}}{{81}}} + \sqrt {169} \) ta được kết quả là

    • A.

      15.

    • B.

      14.

    • C.

      13.

    • D.

      12.

    Câu 6 :

    Thu gọn \(\sqrt[3]{{125{a^3}}}\) ta được

    • A.

      \( - 5a\).

    • B.

      \(25a\).

    • C.

      \( - 25{a^3}\).

    • D.

      \(5a\).

    Câu 7 :

    Cho tam giác ABC vuông tại A có \(AC = 5cm,\widehat B = 30^\circ \). Độ dài BC là

    • A.

      \(5,5cm\).

    • B.

      \(5cm\).

    • C.

      \(10cm\).

    • D.

      \(5\sqrt 2 cm\).

    Câu 8 :

    Cho đường tròn \(\left( {O;3cm} \right)\) và hai điểm A, B sao cho \(OA = OB = 3cm\). Khi đó

    • A.

      Điểm A nằm trong (O), điểm B nằm trên (O).

    • B.

      Điểm A và B đối xứng với nhau qua tâm O.

    • C.

      Điểm A và B đều nằm trên đường tròn (O).

    • D.

      \(AB = 6cm\) là đường kính của đường tròn (O).

    Câu 9 :

    Cho đường tròn (O) có AB là đường kính. Lấy C là điểm thuộc cung cung AB biết \(\widehat {AOC} = 130^\circ \). Số đo cung nhỏ \(BC\) là:

    Đề thi học kì 1 Toán 9 Kết nối tri thức - Đề số 5 0 1

    • A.

      \(360^\circ \).

    • B.

      \(230^\circ \).

    • C.

      \(130^\circ \).

    • D.

      \(50^\circ \).

    Câu 10 :

    Độ dài cung tròn \(60^\circ \) của đường tròn đường kính 6dm là

    • A.

      \(\pi \left( {dm} \right)\).

    • B.

      \(2\pi \left( {dm} \right)\).

    • C.

      \(36\pi \left( {dm} \right)\).

    • D.

      \(12\pi \left( {dm} \right)\).

    Câu 11 :

    Cho hai đường tròn \(\left( {O;20cm} \right)\) và \(\left( {O';15cm} \right)\) cắt nhau. Khi đó

    • A.

      \(OO' < 5cm\).

    • B.

      \(5cm < OO' < 35cm\).

    • C.

      \(OO' > 35cm\).

    • D.

      \(OO' = 35cm\).

    Câu 12 :

    Cho hai tiếp tuyến PA và PB của đường tròn (O) (A, B là hai tiếp điểm). Biết \(\widehat {APB} = 60^\circ \), khi đó \(\widehat {APO}\) bằng

    • A.

      \(120^\circ \).

    • B.

      \(60^\circ \).

    • C.

      \(20^\circ \).

    • D.

      \(30^\circ \).

    Phần II. Câu hỏi trắc nghiệm đúng sai
    Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
    Câu 1 :

    Cho biểu thức \(A = \left( {\frac{1}{{\sqrt a + 1}} - \frac{1}{{\sqrt a + a}}} \right):\frac{{\sqrt a - 1}}{{2\sqrt a + a + 1}}\) \(\left( {a > 0;a \ne 1} \right)\).

    a) \(A = \frac{{\sqrt a + 1}}{{\sqrt a }}\).

    Đúng
    Sai

    b) Giá trị của A khi \(a = 4\) là \(\frac{3}{2}\).

    Đúng
    Sai

    c) Khi \(a \ge 1\) thì \(\sqrt a .A \ge 2\).

    Đúng
    Sai

    d) Có \(0\) giá trị nguyên của \(a\) để \(A\) nguyên.

    Đúng
    Sai
    Câu 2 :

    Một trường trung học mua \(878\) quyển vở bao gồm \(x\) quyển vở loại thứ nhất và \(y\) quyển vở loại thứ hai (\(x,y \in \mathbb{N}\)). Giá bán mỗi quyển vở loại thứ nhất và loại thứ hai lần lượt là \(7500\) và \(12600\) đồng. Biết tổng số tiền nhà trường đã dùng để mua \(878\) quyển vở là \(9073800\) đồng. Mỗi học sinh xuất sắc được thưởng \(3\) quyển vở loại thứ nhất và \(4\) quyển vở loại thứ hai. Mỗi học sinh giỏi được thưởng \(2\) quyển vở loại thứ nhất và \(2\) quyển vở loại thứ hai, các học sinh khác không được thưởng, tổng số học sinh giỏi và xuất sắc chiếm \(20\% \) số học sinh toàn trường.

    a) \(x + y = 878\).

    Đúng
    Sai

    b) \(75x + 126y = 9073800\).

    Đúng
    Sai

    c) \(x = 391\), \(y = 488\).

    Đúng
    Sai

    d) Tổng số học sinh của trường là \(749\).

    Đúng
    Sai
    Câu 3 :

    Một trường trung học dự định tổ chức chuyến tham quan học tập thực tế cho học sinh khối 9 tại một bảo tàng và công viên khoa học (Science Park) trong 1 ngày (trong ngày từ 7h00 đến 17h00). Tổng kinh phí nhà trường dự trù là 20 triệu đồng, bao gồm chi phí thuê xe đưa đón và bữa ăn cho học sinh. Gọi \(x\) là số bạn có thể tham gia chuyến tham quan. (học sinh, \(x > 0\))

    • Giá thuê xe là 5 triệu đồng/ngày.

    • Vé vào cổng mỗi học sinh là 30 000 đồng.

    • Bữa ăn trưa cho mỗi học sinh có giá 50 000 đồng.

    a) Chi phí cho mỗi học sinh là 80 000 đồng.

    Đúng
    Sai

    b) Tổng chi phí nhà trường cần trả cho chuyến tham quan có \(x\) bạn là \(80\,000x\).

    Đúng
    Sai

    c) \(80\,000x + 5\,000\,000 \le 20\,000\,000\).

    Đúng
    Sai

    d) Trường có thể tổ chức cho tối đa 188 học sinh tham gia chuyến tham quan này.

    Đúng
    Sai
    Câu 4 :

    Cho tam giác MNP có MN = 5cm, NP = 12cm, MP = 13cm. Vẽ đường tròn \(\left( {M;MN} \right)\), gọi Q là giao điểm của đường tròn với MP.

    a) NP là tiếp tuyến của \(\left( {M;MN} \right)\).

    Đúng
    Sai

    b) \(\widehat {NPM} \approx 30^\circ \).

    Đúng
    Sai

    c) sđ$\overset\frown{NQ}\approx 67{}^\circ $.

    Đúng
    Sai

    d) \(\widehat {PNQ} \approx 35^\circ \).

    Đúng
    Sai
    Phần III. Câu hỏi trắc nghiệm trả lời ngắn
    Thí sinh trả lời câu hỏi từ câu 1 đến câu 6
    Câu 1 :

    Phương trình \(x\left( {x - 5} \right) + 2\left( {x - 5} \right) = 0\) có tổng hai nghiệm bằng:

    Đáp án:

    Câu 2 :

    Giá trị của biểu thức \(\sqrt {\frac{3}{5}} - \sqrt {\frac{5}{3}} + \frac{{\sqrt {60} }}{{15}}\) có kết quả bằng:

    Đáp án:

    Câu 3 :

    Tổng các giá trị của x để \(\sqrt {{x^2} - 6x + 9} = 2\) là:

    Đáp án:

    Câu 4 :

    Cho hai đường tròn \(\left( {A;3cm} \right)\) và \(\left( {B;5cm} \right)\) đựng nhau. Gọi M, N lần lượt là giao điểm của AB với \(\left( {A;3cm} \right)\). Gọi C, D lần lượt là giao điểm của AB với \(\left( {B;5cm} \right)\) sao cho C, M nằm cùng phía đối với A còn N, D nằm cùng phía đối với B. Tổng ND + CM là bao nhiêu cm?

    Đáp án:

    Câu 5 :

    Một đầu của cần gạt nước được cố định tại điểm O. Khi đầu còn lại của cần gạt xoay \(60^\circ \), nó sẽ quét được một vùng có diện tích bằng \(\frac{8}{3}\pi \left( {{m^2}} \right)\).

    Đề thi học kì 1 Toán 9 Kết nối tri thức - Đề số 5 0 2

    Chiều dài của cần gạt nước là bao nhiêu m?

    Đáp án:

    Câu 6 :

    Cho \(\alpha \) là góc nhọn bất kì. Khi đó \(C = {\sin ^6}\alpha + {\cos ^6}\alpha + 3{\sin ^2}\alpha .{\cos ^2}\alpha \) có giá trị bằng:

    Đáp án:

    Lời giải và đáp án

      Phần I. Câu hỏi trắc nghiệm nhiều phương án lựa chọn
      Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
      Câu 1 :

      Phương trình \(2x + y = 1\) kết hợp với phương trình nào dưới đây để được một hệ phương trình bậc nhất hai ẩn?

      • A.

        \(2x + 3{y^2} = 0\).

      • B.

        \(xy - x = 1\).

      • C.

        \(3x + 2{y^3} = 1\).

      • D.

        \(3x - y = 5\).

      Đáp án : D

      Phương pháp giải :

      Hệ phương trình bậc nhất hai ẩn là hệ bao gồm hai phương trình bậc nhất hai ẩn.

      Lời giải chi tiết :

      Vì phương trình \(3x - y = 5\) là phương trình bậc nhất hai ẩn nên kết hợp với phương trình \(2x + y = 1\) ta được hệ phương trình bậc nhất hai ẩn \(\left\{ \begin{array}{l}2x + y = 1\\3x - y = 5\end{array} \right.\).

      Đáp án D

      Câu 2 :

      Điều kiện xác định của phương trình \(\frac{{4x - 5}}{{x - 1}} = 2x + \frac{1}{{{x^2}}}\) là

      • A.

        \(x \ne 1;x \ne 0\).

      • B.

        \(x \ne - 1\) và \(x \ne 0\).

      • C.

        \(x \ne 1\).

      • D.

        \(x \ne 0\).

      Đáp án : A

      Phương pháp giải :

      Điều kiện xác định của phương trình chứa ẩn ở mẫu là mẫu thức khác 0.

      Lời giải chi tiết :

      Điều kiện xác định của phương trình \(\frac{{4x - 5}}{{x - 1}} = 2x + \frac{1}{{{x^2}}}\) là \(x - 1 \ne 0\) và \({x^2} \ne 0\).

      Suy ra \(x \ne 1;x \ne 0\).

      Đáp án A

      Câu 3 :

      Bất phương trình \( - x - 2 > 4\), phép biến đổi nào sau đây là đúng?

      • A.

        \(x > 4 + 2\).

      • B.

        \(x < 4 - 2\).

      • C.

        \(x < - 4 - 2\).

      • D.

        \(x < - 4 + 2\).

      Đáp án : C

      Phương pháp giải :

      Sử dụng tính chất của bất đẳng thức để biến đổi bất phương trình.

      Lời giải chi tiết :

      Ta có:

      \(\begin{array}{l} - x - 2 > 4\\ - x > 4 + 2\\x < - 4 - 2\end{array}\)

      Đáp án C

      Câu 4 :

      Cho số thực \(a > 0\). Số nào sau đây là căn bậc hai số học của a?

      • A.

        \(2\sqrt a \).

      • B.

        \(\sqrt a \).

      • C.

        \(\sqrt {2a} \).

      • D.

        \( - \sqrt a \).

      Đáp án : B

      Phương pháp giải :

      Sử dụng khái niệm căn bậc hai số học của một số.

      Lời giải chi tiết :

      Căn bậc hai số học của một số thực a > 0 là \(\sqrt a \).

      Đáp án B

      Câu 5 :

      Rút gọn biểu thức \(\frac{2}{5}.\sqrt {25} - \frac{9}{2}.\sqrt {\frac{{16}}{{81}}} + \sqrt {169} \) ta được kết quả là

      • A.

        15.

      • B.

        14.

      • C.

        13.

      • D.

        12.

      Đáp án : C

      Phương pháp giải :

      Sử dụng kiến thức về căn bậc hai để rút gọn.

      Lời giải chi tiết :

      \(\begin{array}{l}\frac{2}{5}.\sqrt {25} - \frac{9}{2}.\sqrt {\frac{{16}}{{81}}} + \sqrt {169} \\ = \frac{2}{5}.5 - \frac{9}{2}.\frac{4}{9} + 13\\ = 2 - 2 + 13\\ = 13\end{array}\)

      Đáp án C

      Câu 6 :

      Thu gọn \(\sqrt[3]{{125{a^3}}}\) ta được

      • A.

        \( - 5a\).

      • B.

        \(25a\).

      • C.

        \( - 25{a^3}\).

      • D.

        \(5a\).

      Đáp án : D

      Phương pháp giải :

      Sử dụng kiến thức về căn thức bậc ba.

      Lời giải chi tiết :

      \(\sqrt[3]{{125{a^3}}} = \sqrt[3]{{{{\left( {5a} \right)}^3}}} = 5a\).

      Đáp án D

      Câu 7 :

      Cho tam giác ABC vuông tại A có \(AC = 5cm,\widehat B = 30^\circ \). Độ dài BC là

      • A.

        \(5,5cm\).

      • B.

        \(5cm\).

      • C.

        \(10cm\).

      • D.

        \(5\sqrt 2 cm\).

      Đáp án : C

      Phương pháp giải :

      Sử dụng hệ thức lượng liên quan đến cạnh đối và cạnh huyền để tính BC.

      Lời giải chi tiết :

      Đề thi học kì 1 Toán 9 Kết nối tri thức - Đề số 5 1 1

      Xét tam giác ABC vuông tại A có \(\widehat B = 30^\circ \) nên ta có:

      \(\sin B = \frac{{AC}}{{BC}}\) suy ra \(BC = \frac{{AC}}{{\sin B}} = \frac{5}{{\sin 30^\circ }} = 10\left( {cm} \right)\)

      Đáp án C

      Câu 8 :

      Cho đường tròn \(\left( {O;3cm} \right)\) và hai điểm A, B sao cho \(OA = OB = 3cm\). Khi đó

      • A.

        Điểm A nằm trong (O), điểm B nằm trên (O).

      • B.

        Điểm A và B đối xứng với nhau qua tâm O.

      • C.

        Điểm A và B đều nằm trên đường tròn (O).

      • D.

        \(AB = 6cm\) là đường kính của đường tròn (O).

      Đáp án : C

      Phương pháp giải :

      Dựa vào kiến thức về vị trí tương đối của điểm và đường tròn.

      Lời giải chi tiết :

      Vì OA = OB = R nên điểm A và B nằm trên (O), do đó A sai, C đúng.

      Vì theo đề bài, điểm O không nằm giữa A và B nên A và B không đối xứng với nhau qua O và AB không phải đường kính của (O), do đó B, D sai.

      Đáp án C

      Câu 9 :

      Cho đường tròn (O) có AB là đường kính. Lấy C là điểm thuộc cung cung AB biết \(\widehat {AOC} = 130^\circ \). Số đo cung nhỏ \(BC\) là:

      Đề thi học kì 1 Toán 9 Kết nối tri thức - Đề số 5 1 2

      • A.

        \(360^\circ \).

      • B.

        \(230^\circ \).

      • C.

        \(130^\circ \).

      • D.

        \(50^\circ \).

      Đáp án : D

      Phương pháp giải :

      Số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó.

      Lời giải chi tiết :

      Số đo cung nhỏ BC chính là số đo góc ở tâm \(\widehat {BOC}\).

      Vì AB là đường kính của đường tròn (O) nên \(\widehat {AOB} = 180^\circ \).

      Mà \(\widehat {AOB} = \widehat {AOC} + \widehat {COB}\) suy ra \(\widehat {BOC} = \widehat {AOB} - \widehat {AOC} = 180^\circ - 130^\circ = 50^\circ \).

      Đáp án D

      Câu 10 :

      Độ dài cung tròn \(60^\circ \) của đường tròn đường kính 6dm là

      • A.

        \(\pi \left( {dm} \right)\).

      • B.

        \(2\pi \left( {dm} \right)\).

      • C.

        \(36\pi \left( {dm} \right)\).

      • D.

        \(12\pi \left( {dm} \right)\).

      Đáp án : A

      Phương pháp giải :

      Sử dụng công thức tính độ dài cung tròn: \(l = \frac{{\pi Rn}}{{180}}\).

      Lời giải chi tiết :

      Bán kính đường tròn là: \(6:2 = 3\left( {dm} \right)\)

      Độ dài cung tròn \(60^\circ \) của đường tròn là:

      \(l = \frac{{\pi .3.60}}{{180}} = \pi \left( {dm} \right)\).

      Đáp án A

      Câu 11 :

      Cho hai đường tròn \(\left( {O;20cm} \right)\) và \(\left( {O';15cm} \right)\) cắt nhau. Khi đó

      • A.

        \(OO' < 5cm\).

      • B.

        \(5cm < OO' < 35cm\).

      • C.

        \(OO' > 35cm\).

      • D.

        \(OO' = 35cm\).

      Đáp án : B

      Phương pháp giải :

      Hai đường tròn (O; R) và (O’; r) (với R > r) cắt nhau khi \(R - r < OO' < R + r\).

      Lời giải chi tiết :

      Vì hai đường tròn \(\left( {O;20cm} \right)\) và \(\left( {O';15cm} \right)\) cắt nhau nên \(20cm - 15cm < OO' < 20cm + 15cm\), suy ra \(5cm < OO' < 35cm\).

      Đáp án B

      Câu 12 :

      Cho hai tiếp tuyến PA và PB của đường tròn (O) (A, B là hai tiếp điểm). Biết \(\widehat {APB} = 60^\circ \), khi đó \(\widehat {APO}\) bằng

      • A.

        \(120^\circ \).

      • B.

        \(60^\circ \).

      • C.

        \(20^\circ \).

      • D.

        \(30^\circ \).

      Đáp án : D

      Phương pháp giải :

      Nếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì tia kẻ từ điểm đó đi qua tâm là tia phân giác của góc tạo bởi hai tiếp tuyến.

      Lời giải chi tiết :

      Đề thi học kì 1 Toán 9 Kết nối tri thức - Đề số 5 1 3

      Vì hai tiếp tuyến PA và PB của đường tròn (O) cắt nhau tại P nên PO là tia phân giác của \(\widehat {APB}\), suy ra \(\widehat {APO} = \widehat {BPO} = \frac{1}{2}\widehat {APB} = \frac{1}{2}.60^\circ = 30^\circ \).

      Đáp án D

      Phần II. Câu hỏi trắc nghiệm đúng sai
      Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
      Câu 1 :

      Cho biểu thức \(A = \left( {\frac{1}{{\sqrt a + 1}} - \frac{1}{{\sqrt a + a}}} \right):\frac{{\sqrt a - 1}}{{2\sqrt a + a + 1}}\) \(\left( {a > 0;a \ne 1} \right)\).

      a) \(A = \frac{{\sqrt a + 1}}{{\sqrt a }}\).

      Đúng
      Sai

      b) Giá trị của A khi \(a = 4\) là \(\frac{3}{2}\).

      Đúng
      Sai

      c) Khi \(a \ge 1\) thì \(\sqrt a .A \ge 2\).

      Đúng
      Sai

      d) Có \(0\) giá trị nguyên của \(a\) để \(A\) nguyên.

      Đúng
      Sai
      Đáp án

      a) \(A = \frac{{\sqrt a + 1}}{{\sqrt a }}\).

      Đúng
      Sai

      b) Giá trị của A khi \(a = 4\) là \(\frac{3}{2}\).

      Đúng
      Sai

      c) Khi \(a \ge 1\) thì \(\sqrt a .A \ge 2\).

      Đúng
      Sai

      d) Có \(0\) giá trị nguyên của \(a\) để \(A\) nguyên.

      Đúng
      Sai
      Phương pháp giải :

      a) Sử dụng tính chất của căn thức bậc hai để rút gọn.

      b) Thay \(a = 4\) vào A để tính giá trị biểu thức A.

      c) Sử dụng tính chất của bất đẳng thức để tính.

      d) Đưa A về dạng \(A = a + \frac{b}{c}\) với a, b là các số nguyên, c là biểu thức chứa x.

      Lời giải chi tiết :

      a) Đúng

      Ta có:

      \(\begin{array}{l}A = \left( {\frac{1}{{\sqrt a + 1}} - \frac{1}{{\sqrt a + a}}} \right):\frac{{\sqrt a - 1}}{{2\sqrt a + a + 1}}\\A = \left[ {\frac{{\sqrt a }}{{\sqrt a \left( {\sqrt a + 1} \right)}} - \frac{1}{{\sqrt a \left( {1 + \sqrt a } \right)}}} \right]:\frac{{\sqrt a - 1}}{{{{\left( {\sqrt a + 1} \right)}^2}}}\\A = \frac{{\sqrt a - 1}}{{\sqrt a \left( {\sqrt a + 1} \right)}}.\frac{{{{\left( {\sqrt a + 1} \right)}^2}}}{{\sqrt a - 1}}\\A = \frac{{\sqrt a + 1}}{{\sqrt a }}\end{array}\)

      b) Đúng

      Thay \(a = 4\) vào A, ta được: \(A = \frac{{\sqrt 4 + 1}}{{\sqrt 4 }} = \frac{3}{2}\).

      c) Sai

      Ta có: \(\sqrt a .A = \sqrt a .\frac{{\sqrt a + 1}}{{\sqrt a }} = \sqrt a + 1\).

      Vì \(\sqrt a .A \ge 2\) nên \(\sqrt a + 1 \ge 2\), suy ra \(\sqrt a \ge 1\), do đó \(a \ge 1\).

      Kết hợp với điều kiện \(a \ne 1\), ta có \(a > 1\).

      d) Đúng

      Ta có: \(A = \frac{{\sqrt a + 1}}{{\sqrt a }} = 1 + \frac{1}{{\sqrt a }}\).

      Để A nguyên thì \(A = 1 + \frac{1}{{\sqrt a }}\) nguyên, do đó \(\frac{1}{{\sqrt a }}\) nguyên.

      Để \(\frac{1}{{\sqrt a }}\) nguyên thì \(\sqrt a \) là ước của 1, và \(\sqrt a > 0\) nên \(\sqrt a = 1\). Suy ra \(a = 1\).

      Mà \(a \ne 1\) nên không có giá trị của a để \(A\) nguyên.

      Đáp án a) Đ, b) Đ, c) S, d) Đ

      Câu 2 :

      Một trường trung học mua \(878\) quyển vở bao gồm \(x\) quyển vở loại thứ nhất và \(y\) quyển vở loại thứ hai (\(x,y \in \mathbb{N}\)). Giá bán mỗi quyển vở loại thứ nhất và loại thứ hai lần lượt là \(7500\) và \(12600\) đồng. Biết tổng số tiền nhà trường đã dùng để mua \(878\) quyển vở là \(9073800\) đồng. Mỗi học sinh xuất sắc được thưởng \(3\) quyển vở loại thứ nhất và \(4\) quyển vở loại thứ hai. Mỗi học sinh giỏi được thưởng \(2\) quyển vở loại thứ nhất và \(2\) quyển vở loại thứ hai, các học sinh khác không được thưởng, tổng số học sinh giỏi và xuất sắc chiếm \(20\% \) số học sinh toàn trường.

      a) \(x + y = 878\).

      Đúng
      Sai

      b) \(75x + 126y = 9073800\).

      Đúng
      Sai

      c) \(x = 391\), \(y = 488\).

      Đúng
      Sai

      d) Tổng số học sinh của trường là \(749\).

      Đúng
      Sai
      Đáp án

      a) \(x + y = 878\).

      Đúng
      Sai

      b) \(75x + 126y = 9073800\).

      Đúng
      Sai

      c) \(x = 391\), \(y = 488\).

      Đúng
      Sai

      d) Tổng số học sinh của trường là \(749\).

      Đúng
      Sai
      Phương pháp giải :

      Dựa vào đề bài để lập hai phương trình bậc nhất hai ẩn.

      Từ đó giải hệ được tạo thành bởi hai phương trình vừa lập.

      Tính số học sinh giỏi và xuất sắc, từ đó tính số học sinh toàn trường.

      Lời giải chi tiết :

      a) Đúng

      Vì trường trung học mua \(878\) quyển vở bao gồm \(x\) quyển vở loại thứ nhất và \(y\) quyển vở loại thứ hai nên ta có: \(x + y = 878\).

      b) Sai

      Vì giá bán mỗi quyển vở loại thứ nhất và loại thứ hai lần lượt là \(7500\) và \(12600\) đồng và tổng số tiền nhà trường đã dùng để mua \(878\) quyển vở là \(9073800\) đồng nên ta có phương trình: \(7500x + 12600y = 9\,073\,800\)

      Suy ra \(75x + 126y = 90\,738\).

      c) Sai

      Hệ phương trình là: \(\left\{ \begin{array}{l}x + y = 878\\75x + 126y = 90\,738\end{array} \right.\).

      Giải hệ phương trình:

      \(\begin{array}{l}\left\{ \begin{array}{l}x + y = 878\\75x + 126y = 90\,738\end{array} \right.\\\left\{ \begin{array}{l}y = 878 - x\\75x + 126\left( {878 - x} \right) = 90\,738\end{array} \right.\\\left\{ \begin{array}{l}y = 878 - x\\ - 51x = - 19\,890\end{array} \right.\\\left\{ \begin{array}{l}x = 390\\y = 878 - 390\end{array} \right.\\\left\{ \begin{array}{l}x = 390\\y = 488\end{array} \right.\end{array}\)

      Vậy \(x = 390;y = 488\).

      d) Sai

      Gọi số học sinh xuất sắc là a, số học sinh giỏi là b (học sinh, \(a,b \in {\mathbb{N}^*}\))

      Vì học sinh xuất sắc được thưởng \(3\) quyển vở loại thứ nhất, mỗi học sinh giỏi được thưởng 2 quyển vở loại thứ nhất nên ta có: \(3a + 2b = 390\).

      Vì học sinh xuất sắc được thưởng \(4\) quyển vở loại thứ hai, mỗi học sinh giỏi được thưởng \(2\) quyển vở loại thứ hai nên ta có: \(4a + 2b = 488\).

      Ta có hệ phương trình:

      \(\left\{ \begin{array}{l}3a + 2b = 390\\4a + 2b = 488\end{array} \right.\)

      \(\begin{array}{l}\left\{ \begin{array}{l}a = 98\\3.98 + 2b = 390\end{array} \right.\\\left\{ \begin{array}{l}a = 98\\b = 48\end{array} \right.\end{array}\)

      Tổng số học sinh giỏi và xuất sắc là: \(98 + 48 = 146\)

      Vì tổng số học sinh giỏi và xuất sắc chiếm \(20\% \) số học sinh toàn trường nên số học sinh của trường là:

      \(146:20\% = 730\)

      Vậy tổng số học sinh của trường là \(730\).

      Đáp án a) Đ, b) S, c) S, d) S

      Câu 3 :

      Một trường trung học dự định tổ chức chuyến tham quan học tập thực tế cho học sinh khối 9 tại một bảo tàng và công viên khoa học (Science Park) trong 1 ngày (trong ngày từ 7h00 đến 17h00). Tổng kinh phí nhà trường dự trù là 20 triệu đồng, bao gồm chi phí thuê xe đưa đón và bữa ăn cho học sinh. Gọi \(x\) là số bạn có thể tham gia chuyến tham quan. (học sinh, \(x > 0\))

      • Giá thuê xe là 5 triệu đồng/ngày.

      • Vé vào cổng mỗi học sinh là 30 000 đồng.

      • Bữa ăn trưa cho mỗi học sinh có giá 50 000 đồng.

      a) Chi phí cho mỗi học sinh là 80 000 đồng.

      Đúng
      Sai

      b) Tổng chi phí nhà trường cần trả cho chuyến tham quan có \(x\) bạn là \(80\,000x\).

      Đúng
      Sai

      c) \(80\,000x + 5\,000\,000 \le 20\,000\,000\).

      Đúng
      Sai

      d) Trường có thể tổ chức cho tối đa 188 học sinh tham gia chuyến tham quan này.

      Đúng
      Sai
      Đáp án

      a) Chi phí cho mỗi học sinh là 80 000 đồng.

      Đúng
      Sai

      b) Tổng chi phí nhà trường cần trả cho chuyến tham quan có \(x\) bạn là \(80\,000x\).

      Đúng
      Sai

      c) \(80\,000x + 5\,000\,000 \le 20\,000\,000\).

      Đúng
      Sai

      d) Trường có thể tổ chức cho tối đa 188 học sinh tham gia chuyến tham quan này.

      Đúng
      Sai
      Phương pháp giải :

      Vì chuyến tham quan từ 7h00 đến 17h00, mỗi học sinh sẽ có chi phí vé vào cổng và bữa ăn trưa nên ta cần tính chi phí cho một học sinh đi tham quan.

      Tổng chi phí nhà trường phải trả bao gồm chi phí cho \(x\) học sinh tham gia và chi phí thuê xe một ngày.

      Vì tổng kinh phí nhà trường dự trù là 20 triệu đồng nên tổng chi phí không được quá 20 triệu đồng. Từ đó ta lập được bất phương trình.

      Giải bất phương trình để tìm x.

      Lời giải chi tiết :

      a) Đúng

      Vì chuyến tham quan từ 7h00 đến 17h00, mỗi học sinh sẽ có chi phí vé vào cổng và bữa ăn trưa nên chi phí cho một học sinh đi tham quan là:

      30 000 + 50 000 = 80 000 (đồng)

      b) Sai

      Tổng chi phí nhà trường phải trả bao gồm chi phí cho \(x\) học sinh tham gia và chi phí thuê xe một ngày là:

      80 000\(x\)+ 5 000 000 (đồng)

      c) Đúng

      Vì tổng kinh phí nhà trường dự trù là 20 triệu đồng nên ta có bất phương trình:

      \(80\,000x + 5\,000\,000 \le 20\,000\,000\)

      d) Sai

      Giải bất phương trình:

      \(80\,000x + 5\,000\,000 \le 20\,000\,000\)

      \(80\,000x \le 15\,000\,000\) (cộng cả hai vế với \( - 5\,000\,000\))

      \(x \le \frac{{15\,000\,000}}{{8\,000\,000}}\) (nhân cả hai vế với \(\frac{1}{{80\,000}}\))

      \(x \le 187,5\)

      Vì số học sinh phải là số nguyên nên số học sinh tối đa là 187.

      Trường có thể tổ chức cho tối đa 187 học sinh tham gia chuyến tham quan này.

      Đáp án a) Đ, b) S, c) Đ, d) S.

      Câu 4 :

      Cho tam giác MNP có MN = 5cm, NP = 12cm, MP = 13cm. Vẽ đường tròn \(\left( {M;MN} \right)\), gọi Q là giao điểm của đường tròn với MP.

      a) NP là tiếp tuyến của \(\left( {M;MN} \right)\).

      Đúng
      Sai

      b) \(\widehat {NPM} \approx 30^\circ \).

      Đúng
      Sai

      c) sđ$\overset\frown{NQ}\approx 67{}^\circ $.

      Đúng
      Sai

      d) \(\widehat {PNQ} \approx 35^\circ \).

      Đúng
      Sai
      Đáp án

      a) NP là tiếp tuyến của \(\left( {M;MN} \right)\).

      Đúng
      Sai

      b) \(\widehat {NPM} \approx 30^\circ \).

      Đúng
      Sai

      c) sđ$\overset\frown{NQ}\approx 67{}^\circ $.

      Đúng
      Sai

      d) \(\widehat {PNQ} \approx 35^\circ \).

      Đúng
      Sai
      Phương pháp giải :

      a) Chứng minh tam giác MNP vuông dựa vào định lí Pythagore đảo.

      b) Sử dụng hệ thức lượng trong tam giác vuông để tính góc NPM.

      b) Tính số đo góc ở tâm NMP, từ đó suy ra số đo cung nhỏ NP.

      d) Tam giác MNQ cân nên ta tính được \(\widehat {MNQ}\), sử dụng tính chất hai góc phụ nhau để suy ra \(\widehat {PNQ}\).

      Lời giải chi tiết :

      Đề thi học kì 1 Toán 9 Kết nối tri thức - Đề số 5 1 4

      a) Đúng

      Xét tam giác MNP có:

      \({13^2} = {12^2} + {5^2}\) hay \(M{P^2} = M{N^2} + N{P^2}\)

      Suy ra tam giác MNP là tam giác vuông tại N (theo định lí Pythagore đảo)

      Suy ra \(MN \bot NP\) và \(N \in \left( {M;MN} \right)\) nên NP là tiếp tuyến của \(\left( {M;MN} \right)\).

      b) Sai

      Áp dụng hệ thức lượng trong tam giác vuông MNP, ta có:

      \(\sin NPM = \frac{{MN}}{{MP}} = \frac{5}{{13}}\) suy ra \(\widehat {NPM} \approx 23^\circ \).

      c) Đúng

      Ta có: \(\widehat {NMP} = 90^\circ - \widehat {NPM} \approx 90^\circ - 23^\circ = 67^\circ \).

      Vì \(\widehat {NMP}\) là góc ở tâm khác góc bẹt nên $\overset\frown{NQ}$ là cung nhỏ, do đó sđ$\overset\frown{NQ}=\widehat{NMQ}\approx 67{}^\circ $.

      d) SaiTam giác NMQ cân tại M (MN = MQ = bán kính) nên \(\widehat {MNQ} = \widehat {MQN} = \frac{{180^\circ - \widehat {NMQ}}}{2} \approx \frac{{180^\circ - 67^\circ }}{2} \approx 57^\circ \).

      Suy ra \(\widehat {PNQ} = 90^\circ - \widehat {MNQ} \approx 90^\circ - 57^\circ = 33^\circ \).

      Đáp án a) Đ, b) S, c) Đ, d) S

      Phần III. Câu hỏi trắc nghiệm trả lời ngắn
      Thí sinh trả lời câu hỏi từ câu 1 đến câu 6
      Câu 1 :

      Phương trình \(x\left( {x - 5} \right) + 2\left( {x - 5} \right) = 0\) có tổng hai nghiệm bằng:

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      Đưa phương trình về phương trình tích. Giải phương trình tích rồi tính tổng hai nghiệm.

      Lời giải chi tiết :

      Ta có:

      \(\begin{array}{l}x\left( {x - 5} \right) + 2\left( {x - 5} \right) = 0\\\left( {x + 2} \right)\left( {x - 5} \right) = 0\end{array}\)

      \(x + 2 = 0\) suy ra \(x = - 2\).

      \(x - 5 = 0\) suy ra \(x = 5\).

      Suy ra tổng hai nghiệm là \( - 2 + 5 = 3\).

      Đáp án: 3

      Câu 2 :

      Giá trị của biểu thức \(\sqrt {\frac{3}{5}} - \sqrt {\frac{5}{3}} + \frac{{\sqrt {60} }}{{15}}\) có kết quả bằng:

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      Sử dụng kiến thức của căn bậc hai để tính giá trị biểu thức.

      Lời giải chi tiết :

      Ta có:

      \(\begin{array}{l}\sqrt {\frac{3}{5}} - \sqrt {\frac{5}{3}} + \frac{{\sqrt {60} }}{{15}}\\ = \frac{{\sqrt {3.5} }}{5} - \frac{{\sqrt {5.3} }}{3} + \frac{{\sqrt {4.15} }}{{15}}\\ = \frac{{\sqrt {15} }}{5} - \frac{{\sqrt {15} }}{3} + \frac{{2\sqrt {15} }}{{15}}\\ = \frac{{3\sqrt {15} }}{{15}} - \frac{{5\sqrt {15} }}{{15}} + \frac{{2\sqrt {15} }}{{15}}\\ = \frac{{3\sqrt {15} - 5\sqrt {15} + 2\sqrt {15} }}{{15}}\\ = 0\end{array}\)

      Đáp án: 0

      Câu 3 :

      Tổng các giá trị của x để \(\sqrt {{x^2} - 6x + 9} = 2\) là:

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      Sử dụng kiến thức \(\sqrt {{A^2}} = \left| A \right|\), giải phương trình để tìm x.

      Lời giải chi tiết :

      Ta có:

      \(\begin{array}{l}\sqrt {{x^2} - 6x + 9} = 2\\\sqrt {{{\left( {x - 3} \right)}^2}} = 2\\\left| {x - 3} \right| = 2\end{array}\)

      Suy ra \(x - 3 = 2\) hoặc \(x - 3 = - 2\).

      +) Với \(x - 3 = 2\) suy ra \(x = 5\).

      +) Với \(x - 3 = - 2\) suy ra \(x = 1\).

      Vậy tổng các giá trị của x là: \(5 + 1 = 6\).

      Đáp án: 6

      Câu 4 :

      Cho hai đường tròn \(\left( {A;3cm} \right)\) và \(\left( {B;5cm} \right)\) đựng nhau. Gọi M, N lần lượt là giao điểm của AB với \(\left( {A;3cm} \right)\). Gọi C, D lần lượt là giao điểm của AB với \(\left( {B;5cm} \right)\) sao cho C, M nằm cùng phía đối với A còn N, D nằm cùng phía đối với B. Tổng ND + CM là bao nhiêu cm?

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      Dựa vào vị trí của các điểm để tính độ dài các đoạn thẳng.

      Lời giải chi tiết :

      Đề thi học kì 1 Toán 9 Kết nối tri thức - Đề số 5 1 5

      Ta có:

      \(CM = BC - AM - AB\)

      \(ND = BD - BN = BD - \left( {AN - AB} \right) = BD - AN + AB\)

      Suy ra \(CM + ND = BC - AM - AB + \left( {BD - AN + AB} \right)\)

      \(\begin{array}{l} = BC - AM - AB + BD - AN + AB\\ = BC + BD - \left( {AM + AN} \right)\end{array}\)

      Mà \(BC = BD = 5cm,AM = AN = 3cm\)

      Suy ra \(CM + ND = 2.5 - 2.3 = 4\left( {cm} \right)\)

      Đáp án: 4

      Câu 5 :

      Một đầu của cần gạt nước được cố định tại điểm O. Khi đầu còn lại của cần gạt xoay \(60^\circ \), nó sẽ quét được một vùng có diện tích bằng \(\frac{8}{3}\pi \left( {{m^2}} \right)\).

      Đề thi học kì 1 Toán 9 Kết nối tri thức - Đề số 5 1 6

      Chiều dài của cần gạt nước là bao nhiêu m?

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      Dựa vào công thức tính diện tích hình quạt tròn: \({S_q} = \frac{{\pi {R^2}n}}{{360}}\).

      Lời giải chi tiết :

      Vì diện tích hình quạt tròn là \(\frac{8}{3}\pi \) nên ta có: \(\frac{{\pi .{R^2}.60}}{{360}} = \frac{{\pi {R^2}}}{6} = \frac{8}{3}\pi \).

      Suy ra \({R^2} = \frac{8}{3}\pi :\frac{\pi }{6} = 16\).

      Do đó \(R = \sqrt {16} = 4\left( m \right)\).

      Vậy chiều dài của cần gạt nước là 4m.

      Đáp án: 4

      Câu 6 :

      Cho \(\alpha \) là góc nhọn bất kì. Khi đó \(C = {\sin ^6}\alpha + {\cos ^6}\alpha + 3{\sin ^2}\alpha .{\cos ^2}\alpha \) có giá trị bằng:

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      Sử dụng công thức mở rộng \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\).

      Lời giải chi tiết :

      \(\begin{array}{l}C = {\sin ^6}\alpha + {\cos ^6}\alpha + 3{\sin ^2}\alpha .{\cos ^2}\alpha \\C = {\sin ^6}\alpha + {\cos ^6}\alpha + 3{\sin ^2}\alpha .{\cos ^2}\alpha .1\\C = {\sin ^6}\alpha + {\cos ^6}\alpha + 3{\sin ^2}\alpha .{\cos ^2}\alpha \left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right)\\C = {\left( {{{\sin }^2}\alpha } \right)^3} + {\left( {{{\cos }^2}\alpha } \right)^3} + 3{\sin ^4}\alpha .{\cos ^2}\alpha + 3{\sin ^2}\alpha .{\cos ^4}\alpha \\C = {\left( {{{\sin }^2}\alpha } \right)^3} + 3{\sin ^4}\alpha .{\cos ^2}\alpha + 3{\sin ^2}\alpha .{\cos ^4}\alpha + {\left( {{{\cos }^2}\alpha } \right)^3}\\C = {\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right)^3} = {1^3} = 1\end{array}\)

      Đáp án: 1

      Đề thi học kì 1 Toán 9 Kết nối tri thức - Đề số 5: Tổng quan và Hướng dẫn Ôn tập

      Học kì 1 Toán 9 là giai đoạn quan trọng, đặt nền móng cho việc học Toán ở các lớp trên. Việc làm quen với các dạng đề thi và luyện tập thường xuyên là chìa khóa để đạt kết quả tốt. Đề thi học kì 1 Toán 9 Kết nối tri thức - Đề số 5 của tusach.vn được thiết kế để hỗ trợ học sinh trong quá trình ôn tập này.

      Cấu trúc Đề thi học kì 1 Toán 9 Kết nối tri thức - Đề số 5

      Đề thi này bao gồm các phần chính sau:

      • Phần trắc nghiệm: Kiểm tra kiến thức cơ bản và khả năng vận dụng nhanh các công thức, định lý.
      • Phần tự luận: Đòi hỏi học sinh trình bày chi tiết các bước giải, thể hiện khả năng phân tích và suy luận logic.

      Các chủ đề chính được đề cập trong đề thi bao gồm:

      • Đại số: Biểu thức đại số, phương trình bậc nhất một ẩn, hệ phương trình bậc nhất hai ẩn.
      • Hình học: Hệ thức lượng trong tam giác vuông, hàm số bậc nhất, đồ thị hàm số.

      Tại sao nên luyện tập với Đề thi học kì 1 Toán 9 Kết nối tri thức - Đề số 5?

      Có rất nhiều lý do để bạn nên sử dụng đề thi này trong quá trình ôn tập:

      1. Bám sát chương trình: Đề thi được biên soạn theo chương trình học chính thức của Bộ Giáo dục và Đào tạo.
      2. Đa dạng dạng bài: Đề thi bao gồm nhiều dạng bài tập khác nhau, giúp bạn làm quen với các tình huống có thể xuất hiện trong đề thi thật.
      3. Đáp án chi tiết: Đáp án đi kèm với đề thi giúp bạn tự kiểm tra và đánh giá kết quả học tập, đồng thời hiểu rõ cách giải các bài toán.
      4. Miễn phí: Đề thi được cung cấp miễn phí trên tusach.vn, giúp bạn tiết kiệm chi phí ôn tập.

      Hướng dẫn ôn tập hiệu quả cho Đề thi học kì 1 Toán 9 Kết nối tri thức

      Để đạt kết quả tốt nhất trong kỳ thi học kì 1, bạn nên:

      • Nắm vững kiến thức cơ bản: Đọc kỹ sách giáo khoa, ghi chép đầy đủ các công thức, định lý và ví dụ minh họa.
      • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau, từ dễ đến khó, để rèn luyện kỹ năng giải toán.
      • Sử dụng đề thi thử: Làm các đề thi thử để làm quen với cấu trúc đề thi và thời gian làm bài.
      • Hỏi thầy cô giáo: Nếu gặp khó khăn trong quá trình học tập, hãy hỏi thầy cô giáo để được giải đáp.

      Tải Đề thi học kì 1 Toán 9 Kết nối tri thức - Đề số 5 ngay hôm nay!

      Đừng bỏ lỡ cơ hội ôn tập hiệu quả với Đề thi học kì 1 Toán 9 Kết nối tri thức - Đề số 5 của tusach.vn. Hãy tải đề thi ngay hôm nay và bắt đầu luyện tập để đạt kết quả tốt nhất trong kỳ thi sắp tới!

      Chủ đềMức độ quan trọng
      Biểu thức đại sốCao
      Phương trình bậc nhất một ẩnCao
      Hệ phương trình bậc nhất hai ẩnTrung bình
      Hệ thức lượng trong tam giác vuôngCao
      Hàm số bậc nhấtTrung bình
      Nguồn: tusach.vn

      Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

      VỀ TUSACH.VN