1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Đề thi học kì 1 Toán 12 Kết nối tri thức - Đề số 4

Đề thi học kì 1 Toán 12 Kết nối tri thức - Đề số 4

Đề thi học kì 1 Toán 12 Kết nối tri thức - Đề số 4

Đề thi học kì 1 Toán 12 Kết nối tri thức - Đề số 4 là một trong những đề thi thử quan trọng giúp học sinh làm quen với cấu trúc đề thi chính thức và rèn luyện kỹ năng giải đề. Đề thi này bao gồm các dạng bài tập khác nhau, tập trung vào các kiến thức trọng tâm của học kì 1.

tusach.vn cung cấp đề thi này kèm theo đáp án chi tiết, giúp học sinh tự đánh giá năng lực và tìm ra những điểm cần cải thiện.

Đề bài

    Phần I: Câu trắc nghiệm nhiều phương án lựa chọn.
    Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
    Câu 1 :

    Cho hàm số y = f(x) xác định trên R có bảng xét dấu của f’(x) như hình.

    Đề thi học kì 1 Toán 12 Kết nối tri thức - Đề số 4 0 1

    Hàm số f(x) nghịch biến trên khoảng nào dưới đây?

    • A.

      \((4;7)\)

    • B.

      \((8;10)\)

    • C.

      \((10; + \infty )\)

    • D.

      \((3;11)\)

    Câu 2 :

    Cho hàm số y = f(x) có bảng biến thiên như hình vẽ.

    Đề thi học kì 1 Toán 12 Kết nối tri thức - Đề số 4 0 2

    Điểm cực đại của hàm số đã cho là

    • A.

      \(x = 3\)

    • B.

      \(x = - 1\)

    • C.

      \(x = - 2\)

    • D.

      \(x = - 4\)

    Câu 3 :

    Cho hàm số f(x) có đồ thị như hình dưới.

    Đề thi học kì 1 Toán 12 Kết nối tri thức - Đề số 4 0 3

    Giá trị nhỏ nhất của hàm số f(x) trên đoạn [0;2] là

    • A.

      -1

    • B.

      -4

    • C.

      2

    • D.

      0

    Câu 4 :

    Tiệm cận ngang của đồ thị hàm số \(y = \frac{{ - 1}}{{2 + x}}\) là

    • A.

      \(y = - 1\)

    • B.

      \(y = - 2\)

    • C.

      \(y = - \frac{1}{2}\)

    • D.

      \(y = 0\)

    Câu 5 :

    Cho hàm số \(f(x) = x - 3 + \frac{1}{{2 - x}}\). Tiệm cận xiên của đồ thị đã cho là đường thẳng

    • A.

      y = 2 – x

    • B.

      y = x – 2

    • C.

      y = x + 3

    • D.

      y = x – 3

    Câu 6 :

    Cho hàm số f(x) có đồ thị y = f’(x) như hình.

    Đề thi học kì 1 Toán 12 Kết nối tri thức - Đề số 4 0 4

    Hàm số f(x) đồng biến trên khoảng

    • A.

      \(( - \infty ; - 1)\)

    • B.

      \((3;4)\)

    • C.

      \(( - 1;0)\)

    • D.

      Cả A, B, C đều đúng

    Câu 7 :

    Cho hình hộp ABCD.EFGH. Kết quả phép toán \(\overrightarrow {AB} - \overrightarrow {HF} \) là

    Đề thi học kì 1 Toán 12 Kết nối tri thức - Đề số 4 0 5

    • A.

      \(\overrightarrow {CA} \)

    • B.

      \(\overrightarrow {EG} \)

    • C.

      \(\overrightarrow {FH} \)

    • D.

      \(\overrightarrow {AD} \)

    Câu 8 :

    Cho hình chóp đều S.ABCD tất cả các cạnh bằng \(2\sqrt 3 \) (đvdt). Tính độ dài vecto \(\overrightarrow u = \overrightarrow {SA} - \overrightarrow {SC} \).

    • A.

      \(\sqrt 2 \)

    • B.

      \(\sqrt 3 \)

    • C.

      \(2\sqrt 6 \)

    • D.

      \(2\sqrt 2 \)

    Câu 9 :

    Trong không gian với hệ tọa độ Oxyz, cho điểm M thỏa mãn \(\overrightarrow {OM} = 2\overrightarrow i + 4\overrightarrow j - 3\overrightarrow k \). Tọa độ điểm M là

    • A.

      (2;4;-3)

    • B.

      (-2;-4;3)

    • C.

      (1;2;3)

    • D.

      (2;4;3)

    Câu 10 :

    Trong không gian với hệ trục tọa độ Oxyz, cho hai vecto \(\overrightarrow u = (3;2;1)\) và \(\overrightarrow v = (1;2;3)\). Tính tích vô hướng \(\overrightarrow u .\overrightarrow v \).

    • A.

      \(\overrightarrow u .\overrightarrow v = 8\)

    • B.

      \(\overrightarrow u .\overrightarrow v = 6\)

    • C.

      \(\overrightarrow u .\overrightarrow v = 6\)

    • D.

      \(\overrightarrow u .\overrightarrow v = 9\)

    Câu 11 :

    Trong không gian Oxyz, cho điểm M(4;1;3). Điểm M’ đối xứng với M qua trục Oz có tọa độ

    • A.

      (-4;-1;3)

    • B.

      (-4;-1;-3)

    • C.

      (4;1;3)

    • D.

      (4;1;-3)

    Câu 12 :

    Thống kê thời gian dùng mạng xã hội của học sinh lớp 12A như sau:

    Đề thi học kì 1 Toán 12 Kết nối tri thức - Đề số 4 0 6

    Khoảng biến thiên của mẫu số liệu ghép nhóm trên là

    • A.

      10

    • B.

      20

    • C.

      30

    • D.

      40

    Phần II: Câu trắc nghiệm đúng sai.
    Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
    Câu 1 :

    Một vật chuyển động thẳng được cho bởi phương trình: \(s(t) = - \frac{1}{3}{t^3} + 4{t^2} + 9t\), trong đó t tính bằng giây và s tính bằng mét.

    a) Vận tốc của vật tại các thời điểm t = 3 giây là v(3) = 1 m/s.

    Đúng
    Sai

    b) Quãng đường vật đi được từ lúc bắt đầu chuyển động đến khi vật dừng yên là 162(m).

    Đúng
    Sai

    c) Gia tốc của vật tại thời điểm t = 3 giây: a(3) = 2 \(m/{s^2}\).

    Đúng
    Sai

    d) Trong 9 giây đầu tiên, vật tăng tốc khi \(t \in \left[ {0;4} \right]\).

    Đúng
    Sai
    Câu 2 :

    Cho tứ diện ABCD. Gọi M, N, P, Q, R, S, G lần lượt là trung điểm các đoạn thẳng AB, CD, AC, BD, AD, BC, MN.

    a) \(\overrightarrow {MR} = \overrightarrow {SN} \).

    Đúng
    Sai

    b) \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \).

    Đúng
    Sai

    c) \(2\overrightarrow {PQ} = \overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} \).

    Đúng
    Sai

    d) \(\left| {\overrightarrow {IA} + \overrightarrow {IB} + \overrightarrow {IC} + \overrightarrow {ID} } \right|\) nhỏ nhất khi và chỉ khi điểm I trùng với điểm G.

    Đúng
    Sai
    Câu 3 :

    Trong không gian Oxyz, cho tam giác ABC với A(1;0;-2), B(-2;3;4), C(4;-6;1).

    a) Tọa độ trọng tâm G của tam giác là G(1;-1;1).

    Đúng
    Sai

    b) \(\overrightarrow {AB} = (3; - 3;6)\), \(\overrightarrow {AC} = ( - 3;6; - 3)\).

    Đúng
    Sai

    c) Tam giác ABC là tam giác cân.

    Đúng
    Sai

    d) Nếu ABDC là hình bình hành thì tọa độ điểm D là (7;-9;-5).

    Đúng
    Sai
    Câu 4 :

    Bảng sau thống kê cân nặng của 50 quả xoài Thanh Ca được lựa chọn ngẫu nhiên sau khi thu hoạch ở một nông trường.

    Đề thi học kì 1 Toán 12 Kết nối tri thức - Đề số 4 0 7

    Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho (làm tròn kết quả đến chữ số thập phân thứ hai).

    Đáp án:

    Phần III: Câu trắc nghiệm trả lời ngắn.
    Thí sinh trả lời từ câu 1 đến câu 6.
    Câu 1 :

    Một bể chứa ban đầu có 100 lít nước. Sau đó, cứ mỗi phút người ta bơm thêm 20 lít nước, đồng thời cho vào bể 10 gam chất khử trùng (hòa tan). Nồng độ chất khử trùng (gam/lít) sau 10 phút là bao nhiêu (làm tròn đến hàng phần trăm)?

    Đáp án:

    Câu 2 :

    Một ngọn hải đăng đạt ở vị trí A cách bờ biển một khoảng AB = 5 (km). Trên bờ biển có một kho hàng ở vị trí C cách B một khoảng là 7 (km). Người canh hải đăng có thể chèo đò từ A đến điểm M trên bờ biển với vận tốc 4 (km/h) rồi đi bộ đến C với vận tốc 6 (km/h). Xác định vị trí của điểm M để người đó đến kho nhanh nhất (làm tròn kết quả đến hàng phần nghìn).

    Đề thi học kì 1 Toán 12 Kết nối tri thức - Đề số 4 0 8

    Đáp án:

    Câu 3 :

    Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) \((a,b,c,d \in \mathbb{R})\) có đồ thị là đường cong trong hình bên. Có bao nhiêu số dương trong các số a, b, c, d?

    Đề thi học kì 1 Toán 12 Kết nối tri thức - Đề số 4 0 9

    Đáp án:

    Câu 4 :

    Cho hình lập phương B’C có đường chéo \(A'C = \frac{3}{{16}}\). Gọi O là tâm hình vuông ABCD và điểm S thỏa mãn \(\overrightarrow {OS} = \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} + \overrightarrow {OA'} + \overrightarrow {OB'} + \overrightarrow {OC'} + \overrightarrow {OD'} \). Khi đó, độ dài đoạn OS bằng \(\frac{{a\sqrt 3 }}{b}\) với \(a,b \in \mathbb{N}\) và \(\frac{a}{b}\) là phân số tối gián. Tính giá trị của biểu thức \(P = {a^2} + {b^2}\).

    Đáp án:

    Câu 5 :

    Những căn nhà gỗ trong Hình 1 được phác thảo dưới dạng một hình lăng trụ đứng tam giác OAB⋅O′A′B′. Với hệ trục toạ độ Oxyz thể hiện như Hình 2 (đơn vị đo lấy theo centimét), hai điểm A′ và B′ có tọa độ lần lượt là (240;450;0) và̀ (120;450;300). Mỗi căn nhà gỗ có chiều dài là a cm, chiều rộng là b cm, mỗi cạnh bên của mặt tiền có độ dài là c cm. Tính a + b + c (làm tròn đến hàng đơn vị).

    Đề thi học kì 1 Toán 12 Kết nối tri thức - Đề số 4 0 10

    Đáp án:

    Câu 6 :

    Người ta ghi lại tuổi thọ của một số con ong cho kết quả như sau:

    Đề thi học kì 1 Toán 12 Kết nối tri thức - Đề số 4 0 11

    Tính khoảng tứ phân vị của mẫu số liệu (làm tròn kết quả đến hàng phần mười).

    Đáp án:

    Lời giải và đáp án

      Phần I: Câu trắc nghiệm nhiều phương án lựa chọn.
      Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
      Câu 1 :

      Cho hàm số y = f(x) xác định trên R có bảng xét dấu của f’(x) như hình.

      Đề thi học kì 1 Toán 12 Kết nối tri thức - Đề số 4 1 1

      Hàm số f(x) nghịch biến trên khoảng nào dưới đây?

      • A.

        \((4;7)\)

      • B.

        \((8;10)\)

      • C.

        \((10; + \infty )\)

      • D.

        \((3;11)\)

      Đáp án : A

      Phương pháp giải :

      Quan sát bảng xét dấu và nhận xét.

      Lời giải chi tiết :

      Trên khoảng (4;7), f’(x) mang dấu âm nên f(x) nghịch biến trên (4;7).

      Câu 2 :

      Cho hàm số y = f(x) có bảng biến thiên như hình vẽ.

      Đề thi học kì 1 Toán 12 Kết nối tri thức - Đề số 4 1 2

      Điểm cực đại của hàm số đã cho là

      • A.

        \(x = 3\)

      • B.

        \(x = - 1\)

      • C.

        \(x = - 2\)

      • D.

        \(x = - 4\)

      Đáp án : C

      Phương pháp giải :

      Quan sát bảng biến thiên và nhận xét.

      Lời giải chi tiết :

      Hàm số đạt cực đại tại x = -2.

      Câu 3 :

      Cho hàm số f(x) có đồ thị như hình dưới.

      Đề thi học kì 1 Toán 12 Kết nối tri thức - Đề số 4 1 3

      Giá trị nhỏ nhất của hàm số f(x) trên đoạn [0;2] là

      • A.

        -1

      • B.

        -4

      • C.

        2

      • D.

        0

      Đáp án : B

      Phương pháp giải :

      Quan sát đồ thị và nhận xét.

      Lời giải chi tiết :

      Giá trị nhỏ nhất của f(x) trên đoạn [0;2] là y = -4 tại x = 0.

      Câu 4 :

      Tiệm cận ngang của đồ thị hàm số \(y = \frac{{ - 1}}{{2 + x}}\) là

      • A.

        \(y = - 1\)

      • B.

        \(y = - 2\)

      • C.

        \(y = - \frac{1}{2}\)

      • D.

        \(y = 0\)

      Đáp án : D

      Phương pháp giải :

      Đường thẳng \(y = {y_0}\) gọi là đường tiệm cận ngang của đồ thị hàm số y = f(x) nếu \(\mathop {\lim }\limits_{x \to {\rm{\;}} + \infty } f(x) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to {\rm{\;}} - \infty } f(x) = {y_0}\).

      Lời giải chi tiết :

      Ta có \(\mathop {\lim }\limits_{x \to + \infty } \frac{{ - 1}}{{2 + x}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - \frac{1}{x}}}{{\frac{2}{x} + 1}} = \frac{0}{1} = 0\) nên đồ thị hàm số f(x) có tiệm cận ngang là \(y = 0\).

      Câu 5 :

      Cho hàm số \(f(x) = x - 3 + \frac{1}{{2 - x}}\). Tiệm cận xiên của đồ thị đã cho là đường thẳng

      • A.

        y = 2 – x

      • B.

        y = x – 2

      • C.

        y = x + 3

      • D.

        y = x – 3

      Đáp án : D

      Phương pháp giải :

      Đường thẳng y = ax + b là tiệm cận xiên của đồ thị hàm số f(x) nếu \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f(x) - (ax + b)} \right] = 0\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } \left[ {f(x) - (ax + b)} \right] = 0\).

      Lời giải chi tiết :

      Ta có \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f(x) - (x + 1)} \right] = \mathop {\lim }\limits_{x \to + \infty } \left[ {x - 3 + \frac{1}{{2 - x}} - (x - 3)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{2 - x}} = 0\).

      Vây y = x + 1 là tiệm cận xiên của đồ thị hàm số.

      Câu 6 :

      Cho hàm số f(x) có đồ thị y = f’(x) như hình.

      Đề thi học kì 1 Toán 12 Kết nối tri thức - Đề số 4 1 4

      Hàm số f(x) đồng biến trên khoảng

      • A.

        \(( - \infty ; - 1)\)

      • B.

        \((3;4)\)

      • C.

        \(( - 1;0)\)

      • D.

        Cả A, B, C đều đúng

      Đáp án : C

      Phương pháp giải :

      Hàm số f(x) đồng biến khi f’(x) > 0 (phần đồ thị f’(x) nằm phía trên trục hoành).

      Lời giải chi tiết :

      Quan sát đồ thị y = f’(x) ta thấy f’(x) > 0 trên (-1;0) nên f(x) đồng biến trên (-1;0).

      Câu 7 :

      Cho hình hộp ABCD.EFGH. Kết quả phép toán \(\overrightarrow {AB} - \overrightarrow {HF} \) là

      Đề thi học kì 1 Toán 12 Kết nối tri thức - Đề số 4 1 5

      • A.

        \(\overrightarrow {CA} \)

      • B.

        \(\overrightarrow {EG} \)

      • C.

        \(\overrightarrow {FH} \)

      • D.

        \(\overrightarrow {AD} \)

      Đáp án : D

      Phương pháp giải :

      Dựa vào khái niệm vecto bằng nhau, vecto đối nhau, quy tắc ba điểm.

      Lời giải chi tiết :

      Ta có \(\overrightarrow {AB} - \overrightarrow {HF} = \overrightarrow {AB} + \overrightarrow {FH} = \overrightarrow {AB} + \overrightarrow {BD} = \overrightarrow {AD} \).

      Câu 8 :

      Cho hình chóp đều S.ABCD tất cả các cạnh bằng \(2\sqrt 3 \) (đvdt). Tính độ dài vecto \(\overrightarrow u = \overrightarrow {SA} - \overrightarrow {SC} \).

      • A.

        \(\sqrt 2 \)

      • B.

        \(\sqrt 3 \)

      • C.

        \(2\sqrt 6 \)

      • D.

        \(2\sqrt 2 \)

      Đáp án : C

      Phương pháp giải :

      Sử dụng quy tắc trừ vecto và xác định độ dài vecto.

      Lời giải chi tiết :

      Ta có \(\left| {\overrightarrow u } \right| = \left| {\overrightarrow {SA} - \overrightarrow {SC} } \right| = \left| {\overrightarrow {CA} } \right| = 2\sqrt 6 \).

      Câu 9 :

      Trong không gian với hệ tọa độ Oxyz, cho điểm M thỏa mãn \(\overrightarrow {OM} = 2\overrightarrow i + 4\overrightarrow j - 3\overrightarrow k \). Tọa độ điểm M là

      • A.

        (2;4;-3)

      • B.

        (-2;-4;3)

      • C.

        (1;2;3)

      • D.

        (2;4;3)

      Đáp án : A

      Phương pháp giải :

      Tọa độ điểm M là tọa độ \(\overrightarrow {OM} \).

      Lời giải chi tiết :

      \(\overrightarrow {OM} = (2;4; - 3)\) suy ra M(2;4;-3).

      Câu 10 :

      Trong không gian với hệ trục tọa độ Oxyz, cho hai vecto \(\overrightarrow u = (3;2;1)\) và \(\overrightarrow v = (1;2;3)\). Tính tích vô hướng \(\overrightarrow u .\overrightarrow v \).

      • A.

        \(\overrightarrow u .\overrightarrow v = 8\)

      • B.

        \(\overrightarrow u .\overrightarrow v = 6\)

      • C.

        \(\overrightarrow u .\overrightarrow v = 6\)

      • D.

        \(\overrightarrow u .\overrightarrow v = 9\)

      Đáp án : C

      Phương pháp giải :

      Sử dụng công thức tính tích vô hướng \(\overrightarrow a .\overrightarrow b = {x_a}.{x_b} + {y_a}.{y_b} + {z_a}.{z_b}\).

      Lời giải chi tiết :

      Ta có: \(\overrightarrow u .\overrightarrow v = 1.3 + 2.2 + 3.1 = 10\).

      Câu 11 :

      Trong không gian Oxyz, cho điểm M(4;1;3). Điểm M’ đối xứng với M qua trục Oz có tọa độ

      • A.

        (-4;-1;3)

      • B.

        (-4;-1;-3)

      • C.

        (4;1;3)

      • D.

        (4;1;-3)

      Đáp án : A

      Phương pháp giải :

      Điểm M’ đối xứng với M(a;b;c) qua trục Oz có tọa độ M’(-a;-b;c).

      Lời giải chi tiết :

      Điểm M’ đối xứng với M(4;1;3) qua trục Oz có tọa độ M’(-4;-1;3).

      Câu 12 :

      Thống kê thời gian dùng mạng xã hội của học sinh lớp 12A như sau:

      Đề thi học kì 1 Toán 12 Kết nối tri thức - Đề số 4 1 6

      Khoảng biến thiên của mẫu số liệu ghép nhóm trên là

      • A.

        10

      • B.

        20

      • C.

        30

      • D.

        40

      Đáp án : D

      Phương pháp giải :

      Khoảng biến thiên của mẫu số liệu ghép nhóm là hiệu số giữa đầu mút phải của nhóm cuối cùng và đầu mút trái của nhóm đầu tiên chứa dữ liệu.

      Lời giải chi tiết :

      R = 40 – 0 = 40.

      Phần II: Câu trắc nghiệm đúng sai.
      Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
      Câu 1 :

      Một vật chuyển động thẳng được cho bởi phương trình: \(s(t) = - \frac{1}{3}{t^3} + 4{t^2} + 9t\), trong đó t tính bằng giây và s tính bằng mét.

      a) Vận tốc của vật tại các thời điểm t = 3 giây là v(3) = 1 m/s.

      Đúng
      Sai

      b) Quãng đường vật đi được từ lúc bắt đầu chuyển động đến khi vật dừng yên là 162(m).

      Đúng
      Sai

      c) Gia tốc của vật tại thời điểm t = 3 giây: a(3) = 2 \(m/{s^2}\).

      Đúng
      Sai

      d) Trong 9 giây đầu tiên, vật tăng tốc khi \(t \in \left[ {0;4} \right]\).

      Đúng
      Sai
      Đáp án

      a) Vận tốc của vật tại các thời điểm t = 3 giây là v(3) = 1 m/s.

      Đúng
      Sai

      b) Quãng đường vật đi được từ lúc bắt đầu chuyển động đến khi vật dừng yên là 162(m).

      Đúng
      Sai

      c) Gia tốc của vật tại thời điểm t = 3 giây: a(3) = 2 \(m/{s^2}\).

      Đúng
      Sai

      d) Trong 9 giây đầu tiên, vật tăng tốc khi \(t \in \left[ {0;4} \right]\).

      Đúng
      Sai
      Phương pháp giải :

      Lập bảng biến thiên và nhận xét.

      Lời giải chi tiết :

      a) Sai. \(v(t) = s'(t) = - {t^2} + 8t + 9\).

      \(v(3) = - {3^2} + 8.3 + 9 = 24\) (m/s).

      b) Đúng. \(v(t) = 0 \Leftrightarrow - {t^2} + 8t + 9 = 0 \Leftrightarrow \) x = -1 (loại) hoặc x = 9 (thỏa mãn).

      Bảng biến thiên:

      Đề thi học kì 1 Toán 12 Kết nối tri thức - Đề số 4 1 7

      Vậy quãng đường vật di chuyển được từ lúc bắt đầu chuyển động đến khi vật đứng yên (v = 0 hay t = 9) là s(9) – s(0) = 162 – 0 = 162 (m).

      c) Đúng. \(a(t) = v'(t) = - 2t + 8\).

      \(a(3) = - 2.3 + 8 = 2\) \(m/{s^2}\).

      d) Sai. Bảng biến thiên:

      Đề thi học kì 1 Toán 12 Kết nối tri thức - Đề số 4 1 8

      Ta thấy tại thời điểm t = 4 thì a(4) = 0, khi đó vật giữ nguyên vận tốc.

      Vậy vật không tăng tốc khi t = 4, hay \(t \in [0;4]\) là sai.

      Câu 2 :

      Cho tứ diện ABCD. Gọi M, N, P, Q, R, S, G lần lượt là trung điểm các đoạn thẳng AB, CD, AC, BD, AD, BC, MN.

      a) \(\overrightarrow {MR} = \overrightarrow {SN} \).

      Đúng
      Sai

      b) \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \).

      Đúng
      Sai

      c) \(2\overrightarrow {PQ} = \overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} \).

      Đúng
      Sai

      d) \(\left| {\overrightarrow {IA} + \overrightarrow {IB} + \overrightarrow {IC} + \overrightarrow {ID} } \right|\) nhỏ nhất khi và chỉ khi điểm I trùng với điểm G.

      Đúng
      Sai
      Đáp án

      a) \(\overrightarrow {MR} = \overrightarrow {SN} \).

      Đúng
      Sai

      b) \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \).

      Đúng
      Sai

      c) \(2\overrightarrow {PQ} = \overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} \).

      Đúng
      Sai

      d) \(\left| {\overrightarrow {IA} + \overrightarrow {IB} + \overrightarrow {IC} + \overrightarrow {ID} } \right|\) nhỏ nhất khi và chỉ khi điểm I trùng với điểm G.

      Đúng
      Sai
      Phương pháp giải :

      Dựa vào khái niệm vecto cùng phương, cùng hướng, cách xác định độ dài vecto, tính chất trung điểm.

      Lời giải chi tiết :

      Đề thi học kì 1 Toán 12 Kết nối tri thức - Đề số 4 1 9

      a) Đúng. Vì \(\overrightarrow {MR} = \frac{1}{2}\overrightarrow {BD} \), \(\overrightarrow {SN} = \frac{1}{2}\overrightarrow {BD} \) suy ra \(\overrightarrow {MR} = \overrightarrow {SN} \).

      b) Đúng. Ta có:

      M là trung điểm của AB nên \(\overrightarrow {GA} + \overrightarrow {GB} = 2\overrightarrow {GM} \).

      N là trung điểm của CD nên \(\overrightarrow {GC} + \overrightarrow {GD} = 2\overrightarrow {GN} \).

      G là trung điểm của MN nên \(\overrightarrow {GM} + \overrightarrow {GN} = \overrightarrow 0 \).

      Từ đó suy ra \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = 2\overrightarrow {GM} + 2\overrightarrow {GN} = 2\left( {\overrightarrow {GM} + \overrightarrow {GN} } \right) = \overrightarrow 0 \).

      c) Sai. Ta có:

      Q là trung điểm của BD nên \(\overrightarrow {AB} + \overrightarrow {AD} = 2\overrightarrow {AQ} \Leftrightarrow \overrightarrow {AQ} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right)\).

      P là trung điểm của AC nên \(\overrightarrow {AP} = \frac{1}{2}\overrightarrow {AC} \).

      Từ đó ta có \(2\overrightarrow {PQ} = 2\left( {\overrightarrow {AQ} - \overrightarrow {AP} } \right) = 2\left[ {\frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AD} } \right) - \frac{1}{2}\overrightarrow {AC} } \right] = \overrightarrow {AB} - \overrightarrow {AC} + \overrightarrow {AD} \).

      d) Đúng. Ta có:

      \(\overrightarrow {IA} + \overrightarrow {IB} + \overrightarrow {IC} + \overrightarrow {ID} = 2\overrightarrow {IM} + 2\overrightarrow {IN} = 2\left( {\overrightarrow {IM} + \overrightarrow {IN} } \right) = 2.2\overrightarrow {IG} = 4\overrightarrow {IG} \).

      Suy ra \(\left| {\overrightarrow {IA} + \overrightarrow {IB} + \overrightarrow {IC} + \overrightarrow {ID} } \right| = \left| {4\overrightarrow {IG} } \right| = 4IG\).

      Vậy \(\left| {\overrightarrow {IA} + \overrightarrow {IB} + \overrightarrow {IC} + \overrightarrow {ID} } \right|\) nhỏ nhất khi IG = 0, tức I trùng G.

      Câu 3 :

      Trong không gian Oxyz, cho tam giác ABC với A(1;0;-2), B(-2;3;4), C(4;-6;1).

      a) Tọa độ trọng tâm G của tam giác là G(1;-1;1).

      Đúng
      Sai

      b) \(\overrightarrow {AB} = (3; - 3;6)\), \(\overrightarrow {AC} = ( - 3;6; - 3)\).

      Đúng
      Sai

      c) Tam giác ABC là tam giác cân.

      Đúng
      Sai

      d) Nếu ABDC là hình bình hành thì tọa độ điểm D là (7;-9;-5).

      Đúng
      Sai
      Đáp án

      a) Tọa độ trọng tâm G của tam giác là G(1;-1;1).

      Đúng
      Sai

      b) \(\overrightarrow {AB} = (3; - 3;6)\), \(\overrightarrow {AC} = ( - 3;6; - 3)\).

      Đúng
      Sai

      c) Tam giác ABC là tam giác cân.

      Đúng
      Sai

      d) Nếu ABDC là hình bình hành thì tọa độ điểm D là (7;-9;-5).

      Đúng
      Sai
      Phương pháp giải :

      Sử dụng các quy tắc cộng, trừ vecto, nhân vecto với một số, tọa độ trọng tâm.

      Lời giải chi tiết :

      a) Đúng. Ta có: \(\left\{ \begin{array}{l}{x_G} = \frac{{{x_A} + {x_B} + {x_C}}}{3} = \frac{{1 - 2 + 4}}{3} = 1\\{y_G} = \frac{{{y_A} + {y_B} + {y_C}}}{3} = \frac{{0 + 3 - 6}}{3} = - 1\\{z_G} = \frac{{{z_A} + {z_B} + {z_C}}}{3} = \frac{{ - 2 + 4 + 1}}{3} = 1\end{array} \right.\), vậy G\(\left( {1; - 1;1} \right)\).

      b) Sai. \(\overrightarrow {AB} = ( - 2 - 1;3 - 0;4 + 2) = ( - 3;3;6)\), \(\overrightarrow {AC} = (4 - 1; - 6 - 0;1 + 2) = (3; - 6;3)\).

      c) Đúng. \(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{{( - 3)}^2} + {3^2} + {6^2}} = 3\sqrt 6 \), \(AC = \left| {\overrightarrow {AC} } \right| = \sqrt {{3^2} + {{( - 6)}^2} + {3^2}} = 3\sqrt 6 \) suy ra AB = AC.

      Vậy tam giác ABC cân tại A.

      d) Sai. Vì ABDC là hình bình hành nên \(\overrightarrow {AB} = \overrightarrow {CD} \Leftrightarrow ( - 3;3;6) = ({x_D} - 4;{y_D} + 6;{z_D} - 1)\).

      Suy ra \(({x_D};{y_D};{z_D}) = (1; - 3;7)\). Vậy D(1;-3;7).

      Câu 4 :

      Bảng sau thống kê cân nặng của 50 quả xoài Thanh Ca được lựa chọn ngẫu nhiên sau khi thu hoạch ở một nông trường.

      Đề thi học kì 1 Toán 12 Kết nối tri thức - Đề số 4 1 10

      Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho (làm tròn kết quả đến chữ số thập phân thứ hai).

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      Công thức: \({\Delta _Q} = {Q_3} - {Q_1}\).

      Lời giải chi tiết :

      Cỡ mẫu: n = 3 + 13 + 18 + 11 + 5 = 50.

      Gọi \({x_1},{x_2},...,{x_{50}}\) là mẫu số liệu gốc được sắp xếp theo thứ tự không giảm.

      Tứ phân vị thứ nhất của mẫu số liệu gốc là \({x_{13}} \in [290;330)\).

      \({Q_1} = 290 + \frac{{\frac{{50}}{4} - 3}}{{13}}(330 - 290) = \frac{{4150}}{{13}}\).

      Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{38}} \in [370;410)\).

      \({Q_3} = 370 + \frac{{\frac{{3.50}}{4} - (3 + 13 + 18)}}{{11}}(410 - 370) = \frac{{4210}}{{11}}\).

      Vậy \({\Delta _Q} = {Q_3} - {Q_1} = \frac{{4210}}{{11}} - \frac{{4150}}{{13}} = \frac{{9080}}{{143}} \approx 63,5\).

      Phần III: Câu trắc nghiệm trả lời ngắn.
      Thí sinh trả lời từ câu 1 đến câu 6.
      Câu 1 :

      Một bể chứa ban đầu có 100 lít nước. Sau đó, cứ mỗi phút người ta bơm thêm 20 lít nước, đồng thời cho vào bể 10 gam chất khử trùng (hòa tan). Nồng độ chất khử trùng (gam/lít) sau 10 phút là bao nhiêu (làm tròn đến hàng phần trăm)?

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      Lập hàm số f(t) tính nồng độ chất khử (khối lượng chất khử trên thể tích nước) theo thời gian t phút rồi tính f(10).

      Lời giải chi tiết :

      Số lít nước trong bể chứa sau t phút là 100 + 20t (lít).

      Số gam chất tan được cho vào bể sau t phút là 10t (gam).

      Nồng độ chất khử trùng trong bể sau t phút là \(f(t) = \frac{{10t}}{{100 + 20t}} = \frac{t}{{10 + 2t}}\) (gam/lít).

      Nồng độ chất khử trùng trong bể sau 10 phút là \(f(10) = \frac{{10}}{{10 + 2.10}} = \frac{1}{3} \approx 0,33\) (gam/lít).

      Câu 2 :

      Một ngọn hải đăng đạt ở vị trí A cách bờ biển một khoảng AB = 5 (km). Trên bờ biển có một kho hàng ở vị trí C cách B một khoảng là 7 (km). Người canh hải đăng có thể chèo đò từ A đến điểm M trên bờ biển với vận tốc 4 (km/h) rồi đi bộ đến C với vận tốc 6 (km/h). Xác định vị trí của điểm M để người đó đến kho nhanh nhất (làm tròn kết quả đến hàng phần nghìn).

      Đề thi học kì 1 Toán 12 Kết nối tri thức - Đề số 4 1 11

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      Thiết lập hàm số biểu diễn thời gian đi từ A đến M và từ M đến C. Tìm giá trị nhỏ nhất của hàm số đó.

      Lời giải chi tiết :

      Đặt x = BM, \(0 \le x \le 7\).

      Khi đó \(AM = \sqrt {{x^2} + 25} \), \(MC = 7 - x\).

      Thời gian người canh hải đăng đi từ A đến C là \(T(x) = \frac{{\sqrt {{x^2} + 25} }}{4} + \frac{{7 - x}}{6}\) (giờ).

      Ta có \(T'(x) = \frac{1}{4}.\frac{{2x}}{{2\sqrt {{x^2} + 25} }} + \frac{1}{6}.( - 1) = \frac{x}{{4\sqrt {{x^2} + 25} }} - \frac{1}{6} = 0 \Leftrightarrow \frac{x}{{4\sqrt {{x^2} + 25} }} = \frac{1}{6}\)

      \( \Leftrightarrow 6x = 4\sqrt {{x^2} + 25} \Leftrightarrow {x^2} = 20\).

      Giải phương trình trên kết hợp với điều kiện ta được \(x = 2\sqrt 5 \).

      Có \(T(0) = \frac{{\sqrt {{0^2} + 25} }}{4} + \frac{{7 - 0}}{6} = \frac{5}{4} + \frac{7}{6} = \frac{{29}}{{12}} \approx 2,417\);

      \(T(2\sqrt 5 ) = \frac{{\sqrt {{{\left( {2\sqrt 5 } \right)}^2} + 25} }}{4} + \frac{{7 - 2\sqrt 5 }}{6} = \frac{5}{4} + \frac{7}{6} = \frac{{4 + 5\sqrt 5 }}{{12}} \approx 2,098\);

      \(T(7) = \frac{{\sqrt {{7^2} + 25} }}{4} + \frac{{7 - 7}}{6} = \frac{{\sqrt {74} }}{4} \approx 2,151\).

      Từ đó suy ra T(x) đạt giá trị nhỏ nhất khi \(x = 2\sqrt 5 \approx 4,472\).

      Vậy để người canh hải đăng đi từ hải đăng đến kho hàng nhanh nhất thì điểm M cách B một khoảng 4,472 km.

      Câu 3 :

      Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) \((a,b,c,d \in \mathbb{R})\) có đồ thị là đường cong trong hình bên. Có bao nhiêu số dương trong các số a, b, c, d?

      Đề thi học kì 1 Toán 12 Kết nối tri thức - Đề số 4 1 12

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      Tìm đạo hàm rồi xác định dấu của a, b, c, d dựa vào các đặc điểm của đồ thị.

      Lời giải chi tiết :

      Có \(y' = 3a{x^2} + 2bx + c\).

      Quan sát đồ thị thấy \(\mathop {\lim }\limits_{x \to + \infty } y = - \infty \) suy ra a < 0.

      Hàm số có hai cực trị âm nên ta có \(\left\{ \begin{array}{l}{\Delta _{y'}} > 0\\S < 0\\P > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{b^2} - 9ac > 0\\ - \frac{{2b}}{{3a}} < 0\\\frac{c}{{3a}} > 0\end{array} \right.\) suy ra \(\left\{ \begin{array}{l}b < 0\\c < 0\end{array} \right.\)

      Đồ thị cắt trục Oy tại điểm (0;d) nên d > 0.

      Vậy chỉ có d dương.

      Câu 4 :

      Cho hình lập phương B’C có đường chéo \(A'C = \frac{3}{{16}}\). Gọi O là tâm hình vuông ABCD và điểm S thỏa mãn \(\overrightarrow {OS} = \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} + \overrightarrow {OA'} + \overrightarrow {OB'} + \overrightarrow {OC'} + \overrightarrow {OD'} \). Khi đó, độ dài đoạn OS bằng \(\frac{{a\sqrt 3 }}{b}\) với \(a,b \in \mathbb{N}\) và \(\frac{a}{b}\) là phân số tối gián. Tính giá trị của biểu thức \(P = {a^2} + {b^2}\).

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      Sử dụng tính chất trung điểm, quy tắc nhân vecto với một số và cách xác định độ dài vecto.

      Lời giải chi tiết :

      Đề thi học kì 1 Toán 12 Kết nối tri thức - Đề số 4 1 13

      Gọi O’ là tâm hình vuông A’B’C’D’.

      Xét tam giác AA’C’ vuông tại A: \(A'{C^2} = A'{A^2} + A{C^2} = A'{A^2} + {\left( {\sqrt 2 A'A} \right)^2} = 3A'{A^2}\).

      Suy ra \(A'A = \frac{{A'C}}{{\sqrt 3 }} = \frac{{\sqrt 3 }}{{16}}\).

      Ta có:

      \(\overrightarrow {OS} = \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} + \overrightarrow {OA'} + \overrightarrow {OB'} + \overrightarrow {OC'} + \overrightarrow {OD'} \)

      \( = \left( {\overrightarrow {OA} + \overrightarrow {OC} } \right) + \left( {\overrightarrow {OB} + \overrightarrow {OD} } \right) + \left( {\overrightarrow {OA'} + \overrightarrow {OC'} } \right) + \left( {\overrightarrow {OB'} + \overrightarrow {OD'} } \right)\)

      \( = \overrightarrow 0 + \overrightarrow 0 + 2\overrightarrow {OO'} + 2\overrightarrow {OO'} = 4\overrightarrow {OO'} \).

      Suy ra \(OS = \left| {\overrightarrow {OS} } \right| = \left| {4\overrightarrow {OO'} } \right| = 4OO' = 4AA' = 4\frac{{\sqrt 3 }}{{16}} = \frac{{\sqrt 3 }}{4}\).

      Khi đó a = 1, b = 4. Ta có \(P = {a^2} + {b^2} = {1^2} + {4^2} = 17\).

      Câu 5 :

      Những căn nhà gỗ trong Hình 1 được phác thảo dưới dạng một hình lăng trụ đứng tam giác OAB⋅O′A′B′. Với hệ trục toạ độ Oxyz thể hiện như Hình 2 (đơn vị đo lấy theo centimét), hai điểm A′ và B′ có tọa độ lần lượt là (240;450;0) và̀ (120;450;300). Mỗi căn nhà gỗ có chiều dài là a cm, chiều rộng là b cm, mỗi cạnh bên của mặt tiền có độ dài là c cm. Tính a + b + c (làm tròn đến hàng đơn vị).

      Đề thi học kì 1 Toán 12 Kết nối tri thức - Đề số 4 1 14

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      Sử dụng quy tắc tính tọa độ vecto, tính độ dài vecto.

      Lời giải chi tiết :

      Ta có: a = AA’, b = A’O’, c = A’B’ = B’O’.

      Vì A’ có tọa độ (240;450;0) nên khoảng cách từ A’ đến trục Ox, Oy lần lượt là 450 cm và 250 cm.

      Hay AA’ = 450 cm và A’O’ = 240 cm.

      Ta có \(\overrightarrow {A'B'} = (120 - 240;450 - 450;300 - 0) = ( - 120;0;300)\).

      \(A'B' = \left| {\overrightarrow {A'B'} } \right| = \sqrt {{{( - 120)}^2} + {0^2} + {{300}^2}} = 60\sqrt {29} \) (cm).

      Vì O’O = A’A = 450 cm và O’ nằm trên trục Oy nên O’(0;450;0).

      \(\overrightarrow {O'B'} = (120 - 0;450 - 450;300 - 0) = (120;0;300)\).

      \(\left| {\overrightarrow {O'B'} } \right| = \sqrt {{{120}^2} + {0^2} + {{300}^2}} = 60\sqrt {29} \).

      Vậy a + b + c = 450 + 240 + \(60\sqrt {29} \) \( \approx 1013\).

      Câu 6 :

      Người ta ghi lại tuổi thọ của một số con ong cho kết quả như sau:

      Đề thi học kì 1 Toán 12 Kết nối tri thức - Đề số 4 1 15

      Tính khoảng tứ phân vị của mẫu số liệu (làm tròn kết quả đến hàng phần mười).

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      Tứ phân vị thứ i, kí hiệu là \({Q_i}\) với i = 1, 2, 3 của mẫu số liệu ghép nhóm được xác định như sau:

      \({Q_i} = {u_m} + \frac{{\frac{{in}}{4} - C}}{{{n_m}}}({u_{m + 1}} - {u_m})\).

      Trong đó:

      \(n = {n_1} + {n_2} + ... + {n_k}\) là cỡ mẫu.

      \([{u_m};{u_{m + 1}})\) là nhóm chứa tứ phân vị thứ i.

      \({n_m}\) là tần số của nhóm chứa tứ phân vị thứ i.

      \(C = {n_1} + {n_2} + ... + {n_{m - 1}}\).

      Khoảng tứ phân vị: \({\Delta _Q} = {Q_3} - {Q_1}\).

      Lời giải chi tiết :

      Cỡ mẫu: n = 5 + 12 + 23 + 31 + 29 = 100.

      Giả sử tuổi thọ của ong là \({x_1},{x_2},...,{x_{100}}\) được sắp xếp theo thứ tự không giảm.

      Tứ phân vị thứ nhất là \({Q_1} = 40 + \frac{{\frac{{100}}{4} - (5 + 12)}}{{23}}(60 - 40) = \frac{{1080}}{{23}}\).

      Tứ phân vị thứ ba là \({Q_3} = 80 + \frac{{\frac{{3.100}}{4} - (5 + 12 + 23 + 31)}}{{29}}(100 - 80) = \frac{{2400}}{{29}}\).

      Khoảng tứ phân vị: \({\Delta _Q} = {Q_3} - {Q_1} = \frac{{2400}}{{29}} - \frac{{1080}}{{23}} \approx 35,8\).

      Đề thi học kì 1 Toán 12 Kết nối tri thức - Đề số 4: Tổng quan và Hướng dẫn Luyện thi

      Chào mừng các em học sinh lớp 12 đến với bài viết phân tích chi tiết về Đề thi học kì 1 Toán 12 Kết nối tri thức - Đề số 4. Đây là một đề thi thử vô cùng quan trọng, giúp các em làm quen với cấu trúc đề thi chính thức, rèn luyện kỹ năng giải đề và tự đánh giá năng lực của bản thân trước kỳ thi quan trọng sắp tới.

      Cấu trúc đề thi và các dạng bài tập chính

      Đề thi học kì 1 Toán 12 Kết nối tri thức - Đề số 4 thường bao gồm các phần sau:

      • Phần trắc nghiệm: Kiểm tra kiến thức cơ bản và khả năng vận dụng nhanh các công thức, định lý.
      • Phần tự luận: Yêu cầu học sinh trình bày chi tiết lời giải, chứng minh các bài toán.

      Các dạng bài tập thường xuất hiện trong đề thi:

      1. Đạo hàm: Tính đạo hàm, ứng dụng đạo hàm để khảo sát hàm số, tìm cực trị, giá trị lớn nhất, giá trị nhỏ nhất.
      2. Tích phân: Tính tích phân, ứng dụng tích phân để tính diện tích hình phẳng.
      3. Số phức: Các phép toán trên số phức, phương trình bậc hai với hệ số phức.
      4. Không gian tọa độ: Vectơ, đường thẳng, mặt phẳng, quan hệ song song, vuông góc.
      5. Hình học: Các bài toán về khối đa diện, khối tròn xoay.

      Phân tích chi tiết một số câu hỏi trong đề thi

      Để giúp các em hiểu rõ hơn về đề thi, chúng ta sẽ cùng phân tích chi tiết một số câu hỏi tiêu biểu:

      Câu 1: (Trắc nghiệm)

      Đề bài: Cho hàm số y = x3 - 3x2 + 2. Tìm đạo hàm của hàm số.

      Hướng dẫn giải: Sử dụng quy tắc đạo hàm của hàm số đa thức, ta có y' = 3x2 - 6x.

      Câu 2: (Tự luận)

      Đề bài: Tính tích phân ∫01 x2 dx.

      Hướng dẫn giải: Sử dụng nguyên hàm của hàm số x2, ta có ∫01 x2 dx = [x3/3]01 = 1/3.

      Lời khuyên khi làm bài thi

      • Đọc kỹ đề bài: Đảm bảo hiểu rõ yêu cầu của từng câu hỏi trước khi bắt đầu giải.
      • Phân bổ thời gian hợp lý: Chia đều thời gian cho các phần trắc nghiệm và tự luận.
      • Trình bày rõ ràng, mạch lạc: Viết lời giải một cách rõ ràng, dễ hiểu, có đầy đủ các bước.
      • Kiểm tra lại bài làm: Sau khi làm xong, hãy dành thời gian kiểm tra lại bài làm để phát hiện và sửa lỗi.

      Tải đề thi và đáp án

      Các em có thể tải Đề thi học kì 1 Toán 12 Kết nối tri thức - Đề số 4 và đáp án chi tiết tại tusach.vn. Chúng tôi luôn cập nhật những đề thi mới nhất và chất lượng nhất để phục vụ nhu cầu học tập của các em.

      Tài liệu ôn thi Toán 12 khác tại tusach.vn

      Ngoài đề thi, tusach.vn còn cung cấp nhiều tài liệu ôn thi Toán 12 hữu ích khác, bao gồm:

      • Sách giáo khoa Toán 12 Kết nối tri thức
      • Bài tập Toán 12 Kết nối tri thức
      • Các đề thi thử Toán 12 khác
      • Video bài giảng Toán 12

      Chúc các em học tập tốt và đạt kết quả cao trong kỳ thi học kì 1!

      Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

      VỀ TUSACH.VN