1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Đề thi giữa kì 1 Toán 12 - Đề số 6

Đề thi giữa kì 1 Toán 12 - Đề số 6

Đề thi giữa kì 1 Toán 12 - Đề số 6 - Chuẩn bị tốt nhất cho kỳ thi

Đề thi giữa kì 1 Toán 12 - Đề số 6 là một công cụ ôn tập vô cùng hữu ích dành cho học sinh lớp 12. Đề thi được biên soạn theo cấu trúc đề thi chính thức, bao gồm nhiều dạng bài tập khác nhau, giúp học sinh làm quen với các dạng câu hỏi thường gặp.

tusach.vn cung cấp đề thi này kèm theo đáp án chi tiết, giúp học sinh tự đánh giá năng lực và tìm ra những điểm cần cải thiện. Hãy cùng luyện tập ngay để đạt kết quả tốt nhất!

Đề bài

    Phần I: Câu trắc nghiệm nhiều phương án lựa chọn.
    Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
    Câu 1 :

    Cho hàm số y = f(x) liên tục trên R và có bảng biến thiên như hình vẽ. Mệnh đề nào sau đây sai?

    Đề thi giữa kì 1 Toán 12 - Đề số 6 0 1

    • A.

      Hàm số đã cho đồng biến trên khoảng \((2; + \infty )\)

    • B.

      Hàm số đã cho đồng biến trên khoảng \((3; + \infty )\)

    • C.

      Hàm số đã cho đồng biến trên khoảng \(( - \infty ;1)\)

    • D.

      Hàm số đã cho nghịch biến trên khoảng (0;3)

    Câu 2 :

    Đường cong trong hình vẽ bên dưới là đồ thị của hàm số nào sau đây?

    Đề thi giữa kì 1 Toán 12 - Đề số 6 0 2

    • A.

      \(y = \frac{{2x + 1}}{{x - 1}}\)

    • B.

      \(y = {x^3} - 3x\)

    • C.

      \(y = - {x^4} + 2{x^2} - 1\)

    • D.

      \(y = - {x^3} - 3x\)

    Câu 3 :

    Cho hàm số y = f(x) có đồ thị như hình vẽ bên.

    Đề thi giữa kì 1 Toán 12 - Đề số 6 0 3

    Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn [-3;1]. Tính M + m.

    • A.

      -1

    • B.

      -2

    • C.

      0

    • D.

      -3

    Câu 4 :

    Cho hàm số y = f(x) có bảng biến thiên như hình vẽ dưới đây. Hỏi đồ thị của hàm số đã cho có bao nhiêu đường tiệm cận?

    Đề thi giữa kì 1 Toán 12 - Đề số 6 0 4

    • A.

      2

    • B.

      3

    • C.

      4

    • D.

      1

    Câu 5 :

    Đường tiệm cận xiên của đồ thị hàm số \(y = \frac{{{x^2} - 4x + 2}}{{ - 2x + 3}}\) là:

    • A.

      \(y = - \frac{1}{2}x - \frac{5}{4}\)

    • B.

      \(y = \frac{1}{2}x + \frac{5}{4}\)

    • C.

      \(y = \frac{1}{2}x - \frac{5}{4}\)

    • D.

      \(y = - \frac{1}{2}x + \frac{5}{4}\)

    Câu 6 :

    Tọa độ tâm đối xứng của đồ thị hàm số \(y = {x^3} + 3{x^2} - 9x + 1\) là:

    • A.

      (-1;6)

    • B.

      (-1;12)

    • C.

      (1;4)

    • D.

      (-3;28)

    Câu 7 :

    Trong không gian, gọi \(\alpha \) là góc giữa hai vecto \(\overrightarrow m \) và \(\overrightarrow n \) khác vecto không. Khẳng định nào sau đây đúng?

    • A.

      \({0^o} \le \alpha \le {180^o}\)

    • B.

      \({0^o} < \alpha < {180^o}\)

    • C.

      \({0^o} \le \alpha \le {90^o}\)

    • D.

      \({0^o} < \alpha < {90^o}\)

    Câu 8 :

    Một doanh nghiệp dự kiến lợi nhuận khi sản xuất x sản phẩm (\(0 \le x \le 300\)) được cho bởi hàm số \(y = - {x^3} + 300{x^2}\) (đơn vị: đồng) và được minh họa bằng đồ thị ở hình bên dưới.

    Đề thi giữa kì 1 Toán 12 - Đề số 6 0 5

    Doanh nghiệp cần sản xuất bao nhiêu sản phẩm để lợi nhuận dự kiến thu được nhiều nhất?

    • A.

      4000000

    • B.

      200

    • C.

      300

    • D.

      150

    Câu 9 :

    Giá trị lớn nhất của hàm số \(y = \frac{{{x^2} + 2x + 3}}{{x - 1}}\) là:

    • A.

      8

    • B.

      9

    • C.

      1

    • D.

      3

    Câu 10 :

    Hàm số f(x) có đạo hàm f’(x) trên khoảng K. Hình vẽ dưới là đồ thị của hàm số f’(x) trên khoảng K. Hỏi hàm số f(x) có bao nhiêu điểm cực trị?

    Đề thi giữa kì 1 Toán 12 - Đề số 6 0 6

    • A.

      1

    • B.

      2

    • C.

      0

    • D.

      3

    Câu 11 :

    Cho tứ diện ABCD có AB = AC = AD và \(\widehat {BAC} = \widehat {BAD} = {60^o}\). Hãy xác định góc giữa cặp vecto \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \).

    • A.

      \({60^o}\)

    • B.

      \({45^o}\)

    • C.

      \({120^o}\)

    • D.

      \({90^o}\)

    Câu 12 :

    Cho hai vecto \(\overrightarrow a ,\overrightarrow b \) thỏa mãn \(\left| {\overrightarrow a } \right| = \left| {\overrightarrow b } \right| = 1\) và \(\overrightarrow a .\overrightarrow b = 3\). Độ dài vecto \(3\overrightarrow a + 5\overrightarrow b \) là?

    • A.

      \(5\sqrt 5 \)

    • B.

      \(\sqrt {124} \)

    • C.

      8

    • D.

      124

    Phần II: Câu trắc nghiệm đúng sai.
    Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
    Câu 1 :

    Cho hàm số f(x) xác định trên R có đồ thị như sau:

    Đề thi giữa kì 1 Toán 12 - Đề số 6 0 7

    a) Hàm số f(x) đồng biến trên (-1;1)

    Đúng
    Sai

    b) Số điểm cực trị của hàm số đã cho là 2

    Đúng
    Sai

    c) Hàm số f(x) không có giá trị lớn nhất và nhỏ nhất

    Đúng
    Sai

    d) Đồ thị hàm số f(x) là \(y = {x^3} - 3x\)

    Đúng
    Sai
    Câu 2 :

    Cho đồ thị của hàm số f(x) như sau:

    Đề thi giữa kì 1 Toán 12 - Đề số 6 0 8

    a) Đồ thị hàm số f(x) có tiệm cận đứng và tiệm cận xiên

    Đúng
    Sai

    b) Đồ thị hàm số nhận gốc tọa độ O làm tâm đối xứng

    Đúng
    Sai

    c) Hàm số f(x) có giá trị lớn nhất là -4

    Đúng
    Sai

    d) Đồ thị hàm số f(x) có điểm cực đại (2;4) và điểm cực tiểu (-2;-4)

    Đúng
    Sai
    Câu 3 :

    Cho hình chóp S.ABCD.

    Đề thi giữa kì 1 Toán 12 - Đề số 6 0 9

    a) Tứ giác ABCD là hình bình hành nếu \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} + \overrightarrow {DA} = \overrightarrow 0 \)

    Đúng
    Sai

    b) Tứ giác ABCD là hình bình hành nếu \(\overrightarrow {AB} = \overrightarrow {CD} \)

    Đúng
    Sai

    c) Nếu có \(\overrightarrow {SB} + \overrightarrow {SD} = \overrightarrow {SA} + \overrightarrow {SC} \) thì tứ giác ABCD là hình bình hành

    Đúng
    Sai

    d) Tứ giác ABCD là hình bình hành nếu \(\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {AD} \)

    Đúng
    Sai
    Câu 4 :

    Trong không gian Oxyz, cho vecto \(\overrightarrow c = (3;4;0)\), \(\overrightarrow b = (1; - 2;2)\).

    a) \(\left| {\overrightarrow a } \right| = 5\)

    Đúng
    Sai

    b) \(\overrightarrow c + \overrightarrow d = (4;2;2)\)

    Đúng
    Sai

    c) \(\overrightarrow c .\overrightarrow d = 1\)

    Đúng
    Sai

    d) Góc giữa hai vecto \(\overrightarrow c ,\overrightarrow d \) bằng \({90^o}\)

    Đúng
    Sai
    Phần III: Câu trắc nghiệm trả lời ngắn.
    Thí sinh trả lời từ câu 1 đến câu 6.
    Câu 1 :

    Gọi giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y = x\sqrt {1 - {x^2}} \) lần lượt là M, m. Tính M + m.

    Đáp án:

    Câu 2 :

    Tính tổng tất cả các giá trị thực của tham số m để đồ thị hàm số \(y = \frac{{{x^2} + m}}{{{x^2} - 3x + 2}}\) có đúng 2 đường tiệm cận.

    Đáp án:

    Câu 3 :

    Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A’B’C’D’. Biết A(2;4;0), B(4;0;0), C(-1;4;-7) và D’(6;8;10). Tổng hoành độ, tung độ, cao độ của điểm B’ bằng bao nhiêu?

    Đáp án:

    Câu 4 :

    Độ giảm huyết áp của một bệnh nhân được cho bởi công thức \(G(x) = 0,035{x^2}(15 - x)\), trong đó x là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng milligram). Tính liều lượng thuốc cần tiêm (đơn vị milligram) cho bệnh nhân để huyết áp giảm nhiều nhất.

    Đáp án:

    Câu 5 :

    Giá trị của tham số m để đồ thị hàm số \(y = {x^3} - 3{x^2} + m\) có hai điểm cực trị A, B thỏa mãn OA = OB (O là gốc tọa độ) có dạng \(\frac{a}{b}\) là một phân số tối giản. Tính a + b.

    Đáp án:

    Câu 6 :

    Cho hàm số y = f(x) có đồ thị như hình:

    Đề thi giữa kì 1 Toán 12 - Đề số 6 0 10

    Tìm số điểm cực trị của hàm số \(g(x) = f({x^2} - 3)\).

    Đáp án:

    Lời giải và đáp án

      Phần I: Câu trắc nghiệm nhiều phương án lựa chọn.
      Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
      Câu 1 :

      Cho hàm số y = f(x) liên tục trên R và có bảng biến thiên như hình vẽ. Mệnh đề nào sau đây sai?

      Đề thi giữa kì 1 Toán 12 - Đề số 6 1 1

      • A.

        Hàm số đã cho đồng biến trên khoảng \((2; + \infty )\)

      • B.

        Hàm số đã cho đồng biến trên khoảng \((3; + \infty )\)

      • C.

        Hàm số đã cho đồng biến trên khoảng \(( - \infty ;1)\)

      • D.

        Hàm số đã cho nghịch biến trên khoảng (0;3)

      Đáp án : D

      Phương pháp giải :

      Quan sát bảng biến thiên và nhận xét.

      Lời giải chi tiết :

      Nhìn vào bảng biến thiên ta thấy đồ thị hàm số đã cho đồng biến trên khoảng (-∞;1) và (2;+∞); nghịch biến trên khoảng (1;2).

      Câu 2 :

      Đường cong trong hình vẽ bên dưới là đồ thị của hàm số nào sau đây?

      Đề thi giữa kì 1 Toán 12 - Đề số 6 1 2

      • A.

        \(y = \frac{{2x + 1}}{{x - 1}}\)

      • B.

        \(y = {x^3} - 3x\)

      • C.

        \(y = - {x^4} + 2{x^2} - 1\)

      • D.

        \(y = - {x^3} - 3x\)

      Đáp án : B

      Phương pháp giải :

      Quan sát đồ thị và nhận xét.

      Lời giải chi tiết :

      Ta có đây là đồ thị hàm số bậc 3 dạng \(y = a{x^3} + b{x^2} + cx + d\), mặt khác hệ số a > 0 (vì \(\mathop {\lim }\limits_{x \to + \infty } y = + \infty \)).

      Câu 3 :

      Cho hàm số y = f(x) có đồ thị như hình vẽ bên.

      Đề thi giữa kì 1 Toán 12 - Đề số 6 1 3

      Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn [-3;1]. Tính M + m.

      • A.

        -1

      • B.

        -2

      • C.

        0

      • D.

        -3

      Đáp án : A

      Phương pháp giải :

      Quan sát đồ thị và nhận xét.

      Lời giải chi tiết :

      Dựa vào đồ thị ta thấy:

      \(\mathop {\max }\limits_{[ - 3;1]} f(x) = 2\), \(\mathop {\min }\limits_{[ - 3;1]} g(x) = - 3\). Vậy M + m = 2 + (-3) = -1.

      Câu 4 :

      Cho hàm số y = f(x) có bảng biến thiên như hình vẽ dưới đây. Hỏi đồ thị của hàm số đã cho có bao nhiêu đường tiệm cận?

      Đề thi giữa kì 1 Toán 12 - Đề số 6 1 4

      • A.

        2

      • B.

        3

      • C.

        4

      • D.

        1

      Đáp án : A

      Phương pháp giải :

      Quan sát bảng biến thiên và nhận xét.

      Lời giải chi tiết :

      Dựa vào bảng biến thiên ta có: \(\mathop {\lim }\limits_{x \to {{( - 2)}^ - }} f(x) = + \infty \) nên x = -2 là tiệm cận đứng của đồ thị hàm số.

      Mặt khác: \(\mathop {\lim }\limits_{x \to - \infty } f(x) = 5\) nên y = 5 là tiệm cận ngang của đồ thị hàm số.

      Vậy đồ thị có 2 tiệm cận.

      Câu 5 :

      Đường tiệm cận xiên của đồ thị hàm số \(y = \frac{{{x^2} - 4x + 2}}{{ - 2x + 3}}\) là:

      • A.

        \(y = - \frac{1}{2}x - \frac{5}{4}\)

      • B.

        \(y = \frac{1}{2}x + \frac{5}{4}\)

      • C.

        \(y = \frac{1}{2}x - \frac{5}{4}\)

      • D.

        \(y = - \frac{1}{2}x + \frac{5}{4}\)

      Đáp án : D

      Phương pháp giải :

      Thực hiện phép chia đa thức (ở tử) cho đa thức (ở mẫu) ta được \(y = ax + b + \frac{M}{{cx + d}}\)(a≠0) với M là hằng số.

      Đường thẳng y = ax + b (a≠0) gọi là đường tiệm cận xiên của đồ thị hàm số y = f(x) nếu \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f(x) - (ax + b)} \right] = 0\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } \left[ {f(x) - (ax + b)} \right] = 0\).

      Kết luận đường thẳng y = ax +b là đường tiệm cận xiên của đồ thị hàm số.

      Lời giải chi tiết :

      Ta có: \(y = \frac{{{x^2} - 4x + 2}}{{ - 2x + 3}} = - \frac{1}{2}x + \frac{5}{4} - \frac{{15}}{{4( - 2x + 3)}} = f(x)\).

      Từ đó: \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f(x) - \left( { - \frac{1}{2}x + \frac{5}{4}} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } - \frac{{15}}{{4( - 2x + 3)}} = 0\).

      Vậy đường thẳng \(y = - \frac{1}{2}x + \frac{5}{4}\) là đường tiệm cận xiên của đồ thị hàm số đã cho.

      Câu 6 :

      Tọa độ tâm đối xứng của đồ thị hàm số \(y = {x^3} + 3{x^2} - 9x + 1\) là:

      • A.

        (-1;6)

      • B.

        (-1;12)

      • C.

        (1;4)

      • D.

        (-3;28)

      Đáp án : B

      Phương pháp giải :

      Tìm điểm thuộc đồ thị có hoành độ tại y’’ = 0.

      Lời giải chi tiết :

      \(y' = 3{x^2} + 6x - 9\), \(y'' = 6x + 6 = 0 \Leftrightarrow x = - 1\).

      Thay x = -1 vào hàm số, được y = 12.

      Câu 7 :

      Trong không gian, gọi \(\alpha \) là góc giữa hai vecto \(\overrightarrow m \) và \(\overrightarrow n \) khác vecto không. Khẳng định nào sau đây đúng?

      • A.

        \({0^o} \le \alpha \le {180^o}\)

      • B.

        \({0^o} < \alpha < {180^o}\)

      • C.

        \({0^o} \le \alpha \le {90^o}\)

      • D.

        \({0^o} < \alpha < {90^o}\)

      Đáp án : A

      Phương pháp giải :

      Lý thuyết góc giữa hai vecto trong không gian.

      Lời giải chi tiết :

      Góc giữa hai vecto có tập giá trị từ \({0^o}\) đến \({180^o}\).

      Câu 8 :

      Một doanh nghiệp dự kiến lợi nhuận khi sản xuất x sản phẩm (\(0 \le x \le 300\)) được cho bởi hàm số \(y = - {x^3} + 300{x^2}\) (đơn vị: đồng) và được minh họa bằng đồ thị ở hình bên dưới.

      Đề thi giữa kì 1 Toán 12 - Đề số 6 1 5

      Doanh nghiệp cần sản xuất bao nhiêu sản phẩm để lợi nhuận dự kiến thu được nhiều nhất?

      • A.

        4000000

      • B.

        200

      • C.

        300

      • D.

        150

      Đáp án : B

      Phương pháp giải :

      Quan sát đồ thị và nhận xét.

      Lời giải chi tiết :

      Lợi nhuận đạt giá trị lớn nhất là 4000000 đồng khi sản xuất 200 sản phẩm.

      Câu 9 :

      Giá trị lớn nhất của hàm số \(y = \frac{{{x^2} + 2x + 3}}{{x - 1}}\) là:

      • A.

        8

      • B.

        9

      • C.

        1

      • D.

        3

      Đáp án : B

      Phương pháp giải :

      Tìm đạo hàm của hàm số sau đó tính các giá trị f(x).

      Lời giải chi tiết :

      Hàm số xác định trên (1;3].

      \(f'(x) = \frac{{{x^2} - 2x - 5}}{{{{(x + 1)}^2}}} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1 + \sqrt 6 \notin (1;3]}\\{x = 1 - \sqrt 6 \notin (1;3]}\end{array}} \right.\)

      Vì \(x \in \left[ {0;\frac{{3\pi }}{2}} \right]\) nên \(f'(x) = 0 \Leftrightarrow x = 0,x = \frac{\pi }{3}\).

      Đề thi giữa kì 1 Toán 12 - Đề số 6 1 6

      Vậy giá trị nhỏ nhất của hàm số \(y = \frac{{{x^2} + 2x + 3}}{{x - 1}}\) bằng 9.

      Câu 10 :

      Hàm số f(x) có đạo hàm f’(x) trên khoảng K. Hình vẽ dưới là đồ thị của hàm số f’(x) trên khoảng K. Hỏi hàm số f(x) có bao nhiêu điểm cực trị?

      Đề thi giữa kì 1 Toán 12 - Đề số 6 1 7

      • A.

        1

      • B.

        2

      • C.

        0

      • D.

        3

      Đáp án : A

      Phương pháp giải :

      Hàm số đạt cực trị tại \({x_0}\) khi f’(x) đổi dấu khi đi qua \({x_0}\).

      Lời giải chi tiết :

      Quan sát đồ thị thấy f’(x) đổi dấu khi đi qua x = -1. Vậy f(x) có duy nhất 1 điểm cực trị là x = -1.

      Câu 11 :

      Cho tứ diện ABCD có AB = AC = AD và \(\widehat {BAC} = \widehat {BAD} = {60^o}\). Hãy xác định góc giữa cặp vecto \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \).

      • A.

        \({60^o}\)

      • B.

        \({45^o}\)

      • C.

        \({120^o}\)

      • D.

        \({90^o}\)

      Đáp án : D

      Phương pháp giải :

      Tính góc thông qua tích vô hướng của 2 vecto.

      Lời giải chi tiết :

      Ta có: \(\overrightarrow {AB} .\overrightarrow {CD} = \overrightarrow {AB} .\left( {\overrightarrow {AD} - \overrightarrow {AC} } \right) = \overrightarrow {AB} .\overrightarrow {AD} - \overrightarrow {AB} .\overrightarrow {AC} \)

      \( = AB.AD.\cos {60^o} - AB.AC.\cos {60^o} = 0\).

      Suy ra \(\left( {\overrightarrow {AB} ,\overrightarrow {CD} } \right) = {90^o}\).

      Câu 12 :

      Cho hai vecto \(\overrightarrow a ,\overrightarrow b \) thỏa mãn \(\left| {\overrightarrow a } \right| = \left| {\overrightarrow b } \right| = 1\) và \(\overrightarrow a .\overrightarrow b = 3\). Độ dài vecto \(3\overrightarrow a + 5\overrightarrow b \) là?

      • A.

        \(5\sqrt 5 \)

      • B.

        \(\sqrt {124} \)

      • C.

        8

      • D.

        124

      Đáp án : B

      Phương pháp giải :

      Sử dụng công thức tính tích vô hướng của hai vecto và tính độ dài vecto.

      Lời giải chi tiết :

      \({\left( {3\overrightarrow a + 5\overrightarrow b } \right)^2} = 9{\overrightarrow a ^2} + 30\overrightarrow a \overrightarrow b + 25{\overrightarrow b ^2}\)

      \(= 9{\left| {\overrightarrow a } \right|^2} + 30\overrightarrow a \overrightarrow b + 25{\left| {\overrightarrow b } \right|^2} \)

      \(= 9.1 + 30.3 + 25.1 = 124 \)

      \(\Rightarrow \left| {3\overrightarrow a + 5\overrightarrow b } \right| = \sqrt {124} \).

      Phần II: Câu trắc nghiệm đúng sai.
      Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
      Câu 1 :

      Cho hàm số f(x) xác định trên R có đồ thị như sau:

      Đề thi giữa kì 1 Toán 12 - Đề số 6 1 8

      a) Hàm số f(x) đồng biến trên (-1;1)

      Đúng
      Sai

      b) Số điểm cực trị của hàm số đã cho là 2

      Đúng
      Sai

      c) Hàm số f(x) không có giá trị lớn nhất và nhỏ nhất

      Đúng
      Sai

      d) Đồ thị hàm số f(x) là \(y = {x^3} - 3x\)

      Đúng
      Sai
      Đáp án

      a) Hàm số f(x) đồng biến trên (-1;1)

      Đúng
      Sai

      b) Số điểm cực trị của hàm số đã cho là 2

      Đúng
      Sai

      c) Hàm số f(x) không có giá trị lớn nhất và nhỏ nhất

      Đúng
      Sai

      d) Đồ thị hàm số f(x) là \(y = {x^3} - 3x\)

      Đúng
      Sai
      Phương pháp giải :

      Quan sát đồ thị và nhận xét.

      Lời giải chi tiết :

      a)Đúng. Hàm số f(x) đồng biến trên (-1;1).

      b) Đúng. Hàm số có 2 điểm cực trị là x = 1; x = -1.

      c) Đúng. Hàm số đã cho không có giá trị lớn nhất và nhỏ nhất.

      d) Sai. Đồ thị hàm số là \(y = - {x^3} + 3x\).

      Câu 2 :

      Cho đồ thị của hàm số f(x) như sau:

      Đề thi giữa kì 1 Toán 12 - Đề số 6 1 9

      a) Đồ thị hàm số f(x) có tiệm cận đứng và tiệm cận xiên

      Đúng
      Sai

      b) Đồ thị hàm số nhận gốc tọa độ O làm tâm đối xứng

      Đúng
      Sai

      c) Hàm số f(x) có giá trị lớn nhất là -4

      Đúng
      Sai

      d) Đồ thị hàm số f(x) có điểm cực đại (2;4) và điểm cực tiểu (-2;-4)

      Đúng
      Sai
      Đáp án

      a) Đồ thị hàm số f(x) có tiệm cận đứng và tiệm cận xiên

      Đúng
      Sai

      b) Đồ thị hàm số nhận gốc tọa độ O làm tâm đối xứng

      Đúng
      Sai

      c) Hàm số f(x) có giá trị lớn nhất là -4

      Đúng
      Sai

      d) Đồ thị hàm số f(x) có điểm cực đại (2;4) và điểm cực tiểu (-2;-4)

      Đúng
      Sai
      Phương pháp giải :

      Quan sát đồ thị và nhận xét.

      Lời giải chi tiết :

      a) Đúng. Đồ thị hàm số f(x) có tiệm cận đứng x = 0 và tiệm cận xiên y = 2x.

      b) Đúng. Vì gốc tọa độ O là trung điểm của 2 cực trị (2;4) và (-2;-4) nên là tâm đối xứng của đồ thị.

      c) Sai. Hàm số không có giá trị lớn nhất.

      d) Sai. Đồ thị hàm số f(x) có điểm cực tiểu (2;4) và điểm cực đại (-2;-4) .

      Câu 3 :

      Cho hình chóp S.ABCD.

      Đề thi giữa kì 1 Toán 12 - Đề số 6 1 10

      a) Tứ giác ABCD là hình bình hành nếu \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} + \overrightarrow {DA} = \overrightarrow 0 \)

      Đúng
      Sai

      b) Tứ giác ABCD là hình bình hành nếu \(\overrightarrow {AB} = \overrightarrow {CD} \)

      Đúng
      Sai

      c) Nếu có \(\overrightarrow {SB} + \overrightarrow {SD} = \overrightarrow {SA} + \overrightarrow {SC} \) thì tứ giác ABCD là hình bình hành

      Đúng
      Sai

      d) Tứ giác ABCD là hình bình hành nếu \(\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {AD} \)

      Đúng
      Sai
      Đáp án

      a) Tứ giác ABCD là hình bình hành nếu \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} + \overrightarrow {DA} = \overrightarrow 0 \)

      Đúng
      Sai

      b) Tứ giác ABCD là hình bình hành nếu \(\overrightarrow {AB} = \overrightarrow {CD} \)

      Đúng
      Sai

      c) Nếu có \(\overrightarrow {SB} + \overrightarrow {SD} = \overrightarrow {SA} + \overrightarrow {SC} \) thì tứ giác ABCD là hình bình hành

      Đúng
      Sai

      d) Tứ giác ABCD là hình bình hành nếu \(\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {AD} \)

      Đúng
      Sai
      Phương pháp giải :

      Sử dụng quy tắc cộng vecto, lý thuyết các vecto bằng nhau, vecto đối nhau, quy tắc hình bình hành.

      Lời giải chi tiết :

      a) Sai. \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} + \overrightarrow {DA} = \overrightarrow 0 \) chưa phải là điều kiện đủ để tứ giác ABCD là hình bình hành.

      b) Sai. Tứ giác ABCD là hình bình hành nếu \(\overrightarrow {AB} = \overrightarrow {DC} \).

      c) Đúng. Vì \(\overrightarrow {SB} + \overrightarrow {SD} = \overrightarrow {SA} + \overrightarrow {SC} \Leftrightarrow \overrightarrow {SA} + \overrightarrow {AB} + \overrightarrow {SA} + \overrightarrow {AD} = \overrightarrow {SA} + \overrightarrow {SA} + \overrightarrow {AC} \)

      \( \Leftrightarrow \overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \) suy ra ABCD là hình bình hành (theo quy tắc hình bình hành).

      d) Sai. Vì tứ giác ABCD là hình bình hành nếu \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \).

      Câu 4 :

      Trong không gian Oxyz, cho vecto \(\overrightarrow c = (3;4;0)\), \(\overrightarrow b = (1; - 2;2)\).

      a) \(\left| {\overrightarrow a } \right| = 5\)

      Đúng
      Sai

      b) \(\overrightarrow c + \overrightarrow d = (4;2;2)\)

      Đúng
      Sai

      c) \(\overrightarrow c .\overrightarrow d = 1\)

      Đúng
      Sai

      d) Góc giữa hai vecto \(\overrightarrow c ,\overrightarrow d \) bằng \({90^o}\)

      Đúng
      Sai
      Đáp án

      a) \(\left| {\overrightarrow a } \right| = 5\)

      Đúng
      Sai

      b) \(\overrightarrow c + \overrightarrow d = (4;2;2)\)

      Đúng
      Sai

      c) \(\overrightarrow c .\overrightarrow d = 1\)

      Đúng
      Sai

      d) Góc giữa hai vecto \(\overrightarrow c ,\overrightarrow d \) bằng \({90^o}\)

      Đúng
      Sai
      Phương pháp giải :

      Sử dụng các quy tắc cộng vecto, công thức tính tích vô hướng của hai vecto, độ dài vecto, góc giữa hai vecto.

      Lời giải chi tiết :

      a) Đúng. Vì \(\left| {\overrightarrow a } \right| = \sqrt {{3^2} + {4^2} + {0^2}} = 5\).

      b) Đúng. Vì \(\overrightarrow a + \overrightarrow b = (3 + 1;4 - 2;0 + 2) = (4;2;2)\).

      c) Sai. Vì \(\overrightarrow a .\overrightarrow b = 3.1 + 4.( - 2) + 0.2 = - 5\).

      d) Sai. Vì \(\cos \left( {\overrightarrow c ,\overrightarrow d } \right) = \frac{{\overrightarrow c .\overrightarrow d }}{{\left| {\overrightarrow c } \right|.\left| {\overrightarrow d } \right|}} = \frac{{ - 5}}{{\sqrt {{3^2} + {4^2} + {0^2}} .\sqrt {{1^2} + {{( - 2)}^2} + {2^2}} }} = \frac{{ - 1}}{3}\) nên góc giữa hai vecto \(\overrightarrow c ,\overrightarrow d \) bằng xấp xỉ \({109^o}\).

      Phần III: Câu trắc nghiệm trả lời ngắn.
      Thí sinh trả lời từ câu 1 đến câu 6.
      Câu 1 :

      Gọi giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(y = x\sqrt {1 - {x^2}} \) lần lượt là M, m. Tính M + m.

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      - Tính y’, tìm các nghiệm của y’ = 0.

      - Tìm giá trị y tại các điểm cực trị của hàm số và hai đầu mút của đoạn.

      Lời giải chi tiết :

      Tập xác định: D = [-1;1].

      Ta có: \[f'(x) = \sqrt {1 - {x^2}} - \frac{{{x^2}}}{{\sqrt {1 - {x^2}} }} = \frac{{1 - 2{x^2}}}{{\sqrt {1 - {x^2}} }} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{{ - \sqrt 2 }}{2}}\\{x = \frac{{\sqrt 2 }}{2}}\end{array}} \right.\]

      f(-1) = f(1) = 0; \(f\left( {\frac{{ - \sqrt 2 }}{2}} \right) = \frac{{ - 1}}{2}\); \(f\left( {\frac{{\sqrt 2 }}{2}} \right) = \frac{1}{2}\).

      Vậy \(M + m = \frac{1}{2} + \frac{{ - 1}}{2} = 0\).

      Câu 2 :

      Tính tổng tất cả các giá trị thực của tham số m để đồ thị hàm số \(y = \frac{{{x^2} + m}}{{{x^2} - 3x + 2}}\) có đúng 2 đường tiệm cận.

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      Sử dụng quy tắc tìm đường tiệm cận của hàm phân thức.

      Lời giải chi tiết :

      Ta luôn có một đường tiệm cận ngang y = 1.

      Đồ thị hàm số có đúng 2 đường tiệm cận khi và chỉ khi \({x^2} + m = 0\) có nghiệm x = 1 hoặc x = 2.

      Khi x = 1 thì m = -1. Khi x = 2 thì m = -4. Vậy tổng các giá trị của m là -1 + (-4) = -5.

      Câu 3 :

      Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A’B’C’D’. Biết A(2;4;0), B(4;0;0), C(-1;4;-7) và D’(6;8;10). Tổng hoành độ, tung độ, cao độ của điểm B’ bằng bao nhiêu?

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      Tìm giao điểm O của AC và BD, từ đó tìm được D. Thông qua \(\overrightarrow {BB'} = \overrightarrow {DD'} \) ta tìm được tọa độ B’.

      Lời giải chi tiết :

      Đề thi giữa kì 1 Toán 12 - Đề số 6 1 11

      Giả sử D(a;b;c), B’(a’;b’;c’). Gọi O là giao điểm của AC và BD, suy ra O là trung điểm của AC.

      Từ đó, ta tính được tọa độ điểm O\(\left( {\frac{1}{2};4;\frac{{ - 7}}{2}} \right)\).

      Vì O là trung điểm của BD nên từ B(4;0;0) ta tìm được D(-3;8;-7).

      Vậy, \(\overrightarrow {DD'} = (9;0;17)\). Mà ABCD.A’B’C’D’ là hình hộp nên \(\overrightarrow {BB'} = \overrightarrow {DD'} = (9;0;17)\).

      Mà \(\overrightarrow {BB'} = (a' - 4;b';c')\), suy ra a’ = 13, b’ = 0, c’ = 17.

      Vậy B’(13;0;17). Tổng hoành độ, tung độ, cao độ của điểm B’ bằng 13 + 0 + 17 = 30.

      Câu 4 :

      Độ giảm huyết áp của một bệnh nhân được cho bởi công thức \(G(x) = 0,035{x^2}(15 - x)\), trong đó x là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng milligram). Tính liều lượng thuốc cần tiêm (đơn vị milligram) cho bệnh nhân để huyết áp giảm nhiều nhất.

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      Lập bảng biến thiên và tìm giá trị lớn nhất của hàm số.

      Lời giải chi tiết :

      Xét G(x) trên đoạn [0;15].

      Ta có: \(G(x) = 0,035(15{x^2} - {x^3}) \Rightarrow G'(x) = 0,035(30x - 3{x^2})\).

      \(G'(x) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = 10}\end{array}} \right.\)

      Mặt khác, G(15) = 0; G(10) = 17,5; G(15) = 0. Vậy x cần tìm là 10.

      Câu 5 :

      Giá trị của tham số m để đồ thị hàm số \(y = {x^3} - 3{x^2} + m\) có hai điểm cực trị A, B thỏa mãn OA = OB (O là gốc tọa độ) có dạng \(\frac{a}{b}\) là một phân số tối giản. Tính a + b.

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      Tìm tọa điểm cực trị A, B của hàm số theo tham số m. Từ biểu thức độ dài OA = OB, tìm m.

      Lời giải chi tiết :

      Tập xác định: D = R.

      \(y' = 3{x^2} - 6x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = 2}\end{array}} \right.\)

      Do đó, đồ thị hàm số đã cho luôn có 2 điểm cực trị lần lượt có tọa độ là A(0; m) và B(2; -4 + m).

      Ta có: \(OA = OB \Leftrightarrow \sqrt {{0^2} + {m^2}} = \sqrt {{2^2} + {{(4 - m)}^2}} \Leftrightarrow {m^2} = 4 + {(4 - m)^2}\)

      \( \Leftrightarrow 20 - 8m = 0 \Leftrightarrow m = \frac{5}{2}\).

      Vậy a = 5, b = 2. Suy ra a + b = 5 + 2 = 7.

      Câu 6 :

      Cho hàm số y = f(x) có đồ thị như hình:

      Đề thi giữa kì 1 Toán 12 - Đề số 6 1 12

      Tìm số điểm cực trị của hàm số \(g(x) = f({x^2} - 3)\).

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      Tìm số nghiệm bội lẻ của phương trình g’(x) = 0.

      Lời giải chi tiết :

      Ta có: \(g'(x) = [f({x^2} - 3)]' = ({x^2} - 3)'f'({x^2} - 3) = 2xf'({x^2} - 3)\).

      \(g'(x) = 0 \Leftrightarrow \left[ {\begin{array}{{20}{c}}{2x = 0}\\{f'({x^2} - 3) = 0}\end{array} \Leftrightarrow \left[ {\begin{array}{{20}{c}}{x = 0}\\{{x^2} - 3 = - 2}\\{{x^2} - 3 = 1}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{{20}{c}}{x = 0}\\{x = \pm 1}\\{x = \pm 2}\end{array}} \right.} \right.\)

      Đề thi giữa kì 1 Toán 12 - Đề số 6 1 13

      Vì f’(x) không đổi dấu khi qua x = 1 nên g(x) có 3 điểm cực trị.

      Đề thi giữa kì 1 Toán 12 - Đề số 6: Tổng quan và Hướng dẫn Ôn tập

      Kỳ thi giữa học kỳ 1 Toán 12 đóng vai trò quan trọng trong việc đánh giá quá trình học tập của học sinh trong nửa học kỳ đầu tiên. Đề thi giữa kì 1 Toán 12 - Đề số 6 tại tusach.vn được thiết kế để giúp các em học sinh làm quen với cấu trúc đề thi, rèn luyện kỹ năng giải quyết các bài toán và tự tin hơn khi bước vào phòng thi.

      Cấu trúc Đề thi giữa kì 1 Toán 12 - Đề số 6

      Đề thi thường bao gồm các phần sau:

      • Phần trắc nghiệm: Kiểm tra kiến thức cơ bản và khả năng vận dụng nhanh các công thức, định lý.
      • Phần tự luận: Yêu cầu học sinh trình bày chi tiết lời giải, thể hiện khả năng phân tích và suy luận logic.

      Các chủ đề thường xuất hiện trong đề thi:

      • Hàm số và đồ thị
      • Giới hạn và liên tục
      • Đạo hàm
      • Ứng dụng đạo hàm
      • Số phức

      Hướng dẫn ôn tập hiệu quả cho Đề thi giữa kì 1 Toán 12

      1. Nắm vững kiến thức cơ bản: Đọc kỹ sách giáo khoa, ghi chép đầy đủ các công thức, định lý và ví dụ minh họa.
      2. Luyện tập thường xuyên: Giải nhiều bài tập khác nhau, từ dễ đến khó, để rèn luyện kỹ năng và làm quen với các dạng bài tập.
      3. Sử dụng các tài liệu ôn tập: Tham khảo các đề thi thử, bài tập trắc nghiệm và các tài liệu ôn tập khác để bổ sung kiến thức và kỹ năng.
      4. Tìm kiếm sự giúp đỡ: Nếu gặp khó khăn, hãy hỏi thầy cô giáo, bạn bè hoặc tham gia các diễn đàn, nhóm học tập trực tuyến.
      5. Lập kế hoạch ôn tập: Chia nhỏ nội dung ôn tập thành các phần nhỏ hơn và lập kế hoạch ôn tập cụ thể để đảm bảo ôn tập đầy đủ và hiệu quả.

      Tại sao nên chọn Đề thi giữa kì 1 Toán 12 - Đề số 6 của tusach.vn?

      tusach.vn cung cấp đề thi giữa kì 1 Toán 12 - Đề số 6 với những ưu điểm sau:

      • Đề thi được biên soạn bởi đội ngũ giáo viên giàu kinh nghiệm: Đảm bảo tính chính xác và phù hợp với chương trình học.
      • Đáp án chi tiết, dễ hiểu: Giúp học sinh tự đánh giá năng lực và tìm ra những điểm cần cải thiện.
      • Giao diện thân thiện, dễ sử dụng: Học sinh có thể dễ dàng tải đề thi và đáp án về máy tính hoặc điện thoại.
      • Miễn phí: Đề thi và đáp án được cung cấp hoàn toàn miễn phí.

      Bảng so sánh các dạng bài tập thường gặp

      Dạng bài tậpMức độ khóLời khuyên
      Tìm tập xác định của hàm sốDễChú ý các điều kiện để hàm số xác định.
      Khảo sát hàm sốTrung bìnhNắm vững các bước khảo sát hàm số.
      Giải phương trình, bất phương trìnhKhóSử dụng các phương pháp giải phương trình, bất phương trình phù hợp.

      Lời kết

      Chúc các em học sinh ôn tập tốt và đạt kết quả cao trong kỳ thi giữa học kỳ 1 Toán 12! Hãy truy cập tusach.vn để tải đề thi giữa kì 1 Toán 12 - Đề số 6 và các tài liệu ôn tập khác.

      Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

      VỀ TUSACH.VN