1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Đề thi học kì 1 Toán 12 Cánh diều - Đề số 3

Đề thi học kì 1 Toán 12 Cánh diều - Đề số 3

Đề thi học kì 1 Toán 12 Cánh diều - Đề số 3

Tusach.vn xin giới thiệu Đề thi học kì 1 Toán 12 Cánh diều - Đề số 3, một tài liệu ôn tập quan trọng dành cho học sinh lớp 12 đang chuẩn bị cho kỳ thi học kì sắp tới. Đề thi được biên soạn bám sát chương trình học và cấu trúc đề thi chính thức của Bộ Giáo dục và Đào tạo.

Đề thi này không chỉ giúp các em làm quen với dạng đề mà còn rèn luyện kỹ năng giải quyết bài toán, tư duy logic và khả năng áp dụng kiến thức vào thực tế.

Đề bài

    Phần I: Câu trắc nghiệm nhiều phương án lựa chọn.
    Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
    Câu 1 :

    Cho hàm số f(x) có bảng biến thiên như sau:

    Đề thi học kì 1 Toán 12 Cánh diều - Đề số 3 0 1

    Hàm số f(x) nghịch biến trên khoảng nào dưới đây?

    • A.

      \((6;7)\)

    • B.

      \((0; - 2)\)

    • C.

      \(( - \infty ; + \infty )\)

    • D.

      \((6; + \infty )\)

    Câu 2 :

    Cho hàm số y = f(x) có đồ thị như hình vẽ.

    Đề thi học kì 1 Toán 12 Cánh diều - Đề số 3 0 2

    Điểm cực đại của hàm số đã cho là

    • A.

      \(x = 3\)

    • B.

      \(x = - 1\)

    • C.

      \(x = 1\)

    • D.

      \(x = 0\)

    Câu 3 :

    Cho hàm số f(x) có bảng biến thiên như hình dưới.

    Đề thi học kì 1 Toán 12 Cánh diều - Đề số 3 0 3

    Giá trị nhỏ nhất của hàm số f(x) là

    • A.

      -13

    • B.

      -17

    • C.

      -18

    • D.

      7

    Câu 4 :

    Tiệm cận ngang của đồ thị hàm số \(y = \frac{{x - 3}}{{2 - x}}\) là

    • A.

      \(y = 3\)

    • B.

      \(y = \frac{1}{2}\)

    • C.

      \(y = - 1\)

    • D.

      \(y = 2\)

    Câu 5 :

    Cho hàm số \(f(x) = x + 1 + \frac{3}{{x - 6}}\). Tiệm cận xiên của đồ thị đã cho là đường thẳng

    • A.

      y = x – 5

    • B.

      y = x – 1

    • C.

      y = x + 1

    • D.

      y = x + 6

    Câu 6 :

    Cho hàm số f(x) có đồ thị y = f’(x) như hình.

    Đề thi học kì 1 Toán 12 Cánh diều - Đề số 3 0 4

    Hàm số f(x) có điểm cực đại là

    • A.

      x = -1

    • B.

      x = 1

    • C.

      x = 0

    • D.

      Đáp án khác

    Câu 7 :

    Cho hình hộp ABCD.EFGH. Kết quả phép toán \(\overrightarrow {AB} + \overrightarrow {EH} \) là

    Đề thi học kì 1 Toán 12 Cánh diều - Đề số 3 0 5

    • A.

      \(\overrightarrow {CA} \)

    • B.

      \(\overrightarrow {EG} \)

    • C.

      \(\overrightarrow {FH} \)

    • D.

      \(\overrightarrow {AD} \)

    Câu 8 :

    Trong không gian cho tam giác ABC có trọng tâm G và điểm M nằm ngoài mặt phẳng (ABC). Khẳng định nào sau đây đúng?

    • A.

      \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow 0 \)

    • B.

      \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = 0\)

    • C.

      \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow {MG} \)

    • D.

      \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = 3\overrightarrow {MG} \)

    Câu 9 :

    Trong không gian với hệ tọa độ Oxyz, cho điểm A(2;-1;0) và B(0;3;2). Tọa độ của vecto \(\overrightarrow {AB} \) là

    • A.

      (-2;4;-2)

    • B.

      (2;-4;-2)

    • C.

      (-2;4;2)

    • D.

      (-1;2;1)

    Câu 10 :

    Trong không gian với hệ trục tọa độ Oxyz, cho hai vecto \(\overrightarrow u = (4;2;1)\) và \(\overrightarrow v = (1;2;1)\). Tính tích vô hướng \(\overrightarrow u .\overrightarrow v \).

    • A.

      \(\overrightarrow u .\overrightarrow v = 8\)

    • B.

      \(\overrightarrow u .\overrightarrow v = 6\)

    • C.

      \(\overrightarrow u .\overrightarrow v = 0\)

    • D.

      \(\overrightarrow u .\overrightarrow v = 9\)

    Câu 11 :

    Trong không gian Oxyz, cho điểm M(1;-2;3). Điểm M’ đối xứng với M qua trục Oy có tọa độ

    • A.

      (1;2;3)

    • B.

      (-1;2;-3)

    • C.

      (-1;-2;-3)

    • D.

      (1;-2;-3)

    Câu 12 :

    Thống kê chỉ số chất lượng không khí (AQI) tại một địa điểm vào các ngày trong tháng 6/2022 được cho trong bảng sau:

    Đề thi học kì 1 Toán 12 Cánh diều - Đề số 3 0 6

    Khoảng biến thiên của mẫu số liệu ghép nhóm trên là

    • A.

      50

    • B.

      250

    • C.

      150

    • D.

      8

    Phần II: Câu trắc nghiệm đúng sai.
    Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
    Câu 1 :

    Cho hàm số \(y = \frac{{ - {x^2} - 3x + 4}}{{x - 3}}\) có đồ thị là (C).

    a) Đồ thị (C) có tiệm cận xiên là y = –x – 6.

    Đúng
    Sai

    b) Đồ thị (C) nhận điểm I(3;-9) làm tâm đối xứng.

    Đúng
    Sai

    c) Đồ thị (C) có hai điểm cực trị nằm ở hai phía đối với Oy.

    Đúng
    Sai

    d) Đồ thị (C) không cắt trục Ox.

    Đúng
    Sai
    Câu 2 :

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Biết AB = a, AD = 2a, SA = 2a và vuông góc với mặt đáy. Gọi M. N lần lượt là trung điểm của các cạnh SB, SD.

    a) Hai vecto \(\overrightarrow {AB} \), \(\overrightarrow {CD} \) là hai vecto cùng phương, cùng hướng.

    Đúng
    Sai

    b) Góc giữa hai vecto \(\overrightarrow {SC} \) và \(\overrightarrow {AC} \) bằng \({60^o}\).

    Đúng
    Sai

    c) Tích vô hướng \(\overrightarrow {AM} .\overrightarrow {AB} = \frac{{{a^2}}}{2}\).

    Đúng
    Sai

    d) Độ dài của vecto \(\overrightarrow {AM} - \overrightarrow {AN} \) bằng \(\frac{{a\sqrt 3 }}{2}\).

    Đúng
    Sai
    Câu 3 :

    Câu 3. Trong không gian Oxyz, cho hai điểm M(-4;3;-1) và N(2;-1;-3).

    a) \(\overrightarrow {OM} = ( - 4;3; - 1)\).

    b) Cho vecto \(\overrightarrow v = \overrightarrow i + 2\overrightarrow j - 3\overrightarrow k \) và \(\overrightarrow {AM} = \overrightarrow v \). Tọa độ điểm A là (-5;1;2).

    c) Gọi G là trọng tâm tam giác OMN. Tọa độ hình chiếu của G trên Oxy là \(\left( {0;0; - \frac{4}{3}} \right)\).

    d) Gọi I là trung điểm đoạn MN. Tọa độ vecto \(\overrightarrow w = 3\overrightarrow i + 2\overrightarrow {ON} - \frac{1}{2}\overrightarrow {OI} \) là \(\left( {\frac{9}{2};\frac{{ - 5}}{2}; - 7} \right)\).

    a) \(\overrightarrow {OM} = ( - 4;3; - 1)\).

    Đúng
    Sai

    b) Cho vecto \(\overrightarrow v = \overrightarrow i + 2\overrightarrow j - 3\overrightarrow k \) và \(\overrightarrow {AM} = \overrightarrow v \). Tọa độ điểm A là (-5;1;2).

    Đúng
    Sai

    c) Gọi G là trọng tâm tam giác OMN. Tọa độ hình chiếu của G trên Oxy là \(\left( {0;0; - \frac{4}{3}} \right)\).

    Đúng
    Sai

    d) Gọi I là trung điểm đoạn MN. Tọa độ vecto \(\overrightarrow w = 3\overrightarrow i + 2\overrightarrow {ON} - \frac{1}{2}\overrightarrow {OI} \) là \(\left( {\frac{9}{2};\frac{{ - 5}}{2}; - 7} \right)\).

    Đúng
    Sai
    Câu 4 :

    Bảng dưới đây cho ta bảng tần số ghép nhóm số liệu thống kê cân nặng của 40 học sinh lớp 12B trong một trường trung học phổ thông (đơn vị: kg).

    Đề thi học kì 1 Toán 12 Cánh diều - Đề số 3 0 7

    a) Số học sinh nặng dưới 50 kg là 12.

    Đúng
    Sai

    b) Cân nặng trung bình của 40 học sinh là 55 kg.

    Đúng
    Sai

    c) Phương sai của mẫu số liệu trên bằng 129.

    Đúng
    Sai

    d) Độ lệch chuẩn của mẫu số liệu trên (làm tròn đến hàng phần mười) là 11,3.

    Đúng
    Sai
    Phần III: Câu trắc nghiệm trả lời ngắn.
    Thí sinh trả lời từ câu 1 đến câu 6.
    Câu 1 :

    Giả sử số lượng của một quần thể nấm X tại môi trường nuôi cấy trong phòng thí nghiệm được mô hình hóa bằng hàm số \(P(t) = 120{e^{0,15t}}\), trong đó thời gian t được tính bằng giờ. Tại thời điểm ban đầu t = 0, tốc độ tăng trưởng của quần thể nấm X là bao nhiêu (đơn vị: tế bào/giờ)?

    Đáp án:

    Câu 2 :

    Một tập chí được bán với giá 20 nghìn đồng một cuốn. Chi phí xuất bản x cuốn tập chí (bao gồm: lương cán bộ, công nhân viên, giấy in, ...) được cho bởi công thức \(C(x) = 0,0001{x^2} - 0,2x + 10000\), C(x) được tính theo đơn vị vạn đồng. Chi phí phát hành cho mỗi cuốn là 4 nghìn đồng. Giả sử T(x) là tổng chi phí (xuất bản và phát hành) cho x cuốn tạp chí. Tỉ số \(M(x) = \frac{{T(x)}}{x}\) được gọi là chi phí trung bình cho một cuốn tạp chí khi xuất bản x cuốn. Tìm số lượng tạp chí cần xuất bản sao cho chi phí trung bình là thấp nhất.

    Đáp án:

    Câu 3 :

    Cho hàm số \(y = \frac{{ax + b}}{{cx + 1}}\) \((a,b,c \in \mathbb{R})\) có bảng biến thiên như sau:

    Đề thi học kì 1 Toán 12 Cánh diều - Đề số 3 0 8

    Có bao nhiêu giá trị nguyên b có thể nhận trong khoảng (-5;5)?

    Đáp án:

    Câu 4 :

    Cho tứ diện đều ABCD có cạnh bằng 15. Biết độ dài \(\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} \) bằng \(a\sqrt 6 \). Khi đó, giá trị của a bằng bao nhiêu?

    Đáp án:

    Câu 5 :

    Một căn phòng dạng hình hộp chữ nhật với chiều dài 8m, rộng 6m và cao 4m có hai chiếc quạt treo tường. Chiếc quạt A treo chính giữa bức tường 8m và cách trần 1m, chiếc quạt B treo chính giữa bức tường 6m và cách trần 1,5m. Hỏi khoảng cách giữa hai chiếc quạt AB cách nhau bao nhiêu m (làm tròn đến hàng phần nghìn)?

    Đề thi học kì 1 Toán 12 Cánh diều - Đề số 3 0 9

    Đáp án:

    Câu 6 :

    Bảng sau thống kê cân nặng của 50 quả xoài Thanh Ca được lựa chọn ngẫu nhiên sau khi thu hoạch ở một nông trường.

    Đề thi học kì 1 Toán 12 Cánh diều - Đề số 3 0 10

    Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho (làm tròn kết quả đến chữ số thập phân thứ hai).

    Đáp án:

    Lời giải và đáp án

      Phần I: Câu trắc nghiệm nhiều phương án lựa chọn.
      Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
      Câu 1 :

      Cho hàm số f(x) có bảng biến thiên như sau:

      Đề thi học kì 1 Toán 12 Cánh diều - Đề số 3 1 1

      Hàm số f(x) nghịch biến trên khoảng nào dưới đây?

      • A.

        \((6;7)\)

      • B.

        \((0; - 2)\)

      • C.

        \(( - \infty ; + \infty )\)

      • D.

        \((6; + \infty )\)

      Đáp án : A

      Phương pháp giải :

      Quan sát bảng xét dấu và nhận xét.

      Lời giải chi tiết :

      Trên khoảng (6;7), f’(x) mang dấu âm nên f(x) nghịch biến trên (6;7).

      Câu 2 :

      Cho hàm số y = f(x) có đồ thị như hình vẽ.

      Đề thi học kì 1 Toán 12 Cánh diều - Đề số 3 1 2

      Điểm cực đại của hàm số đã cho là

      • A.

        \(x = 3\)

      • B.

        \(x = - 1\)

      • C.

        \(x = 1\)

      • D.

        \(x = 0\)

      Đáp án : B

      Phương pháp giải :

      Quan sát đồ thị và nhận xét.

      Lời giải chi tiết :

      Hàm số đạt cực đại tại x = -1.

      Câu 3 :

      Cho hàm số f(x) có bảng biến thiên như hình dưới.

      Đề thi học kì 1 Toán 12 Cánh diều - Đề số 3 1 3

      Giá trị nhỏ nhất của hàm số f(x) là

      • A.

        -13

      • B.

        -17

      • C.

        -18

      • D.

        7

      Đáp án : C

      Phương pháp giải :

      Quan sát đồ thị và nhận xét.

      Lời giải chi tiết :

      Giá trị nhỏ nhất của f(x) là y = -18 tại x = 7.

      Câu 4 :

      Tiệm cận ngang của đồ thị hàm số \(y = \frac{{x - 3}}{{2 - x}}\) là

      • A.

        \(y = 3\)

      • B.

        \(y = \frac{1}{2}\)

      • C.

        \(y = - 1\)

      • D.

        \(y = 2\)

      Đáp án : C

      Phương pháp giải :

      Đường thẳng \(y = {y_0}\) gọi là đường tiệm cận ngang của đồ thị hàm số y = f(x) nếu \(\mathop {\lim }\limits_{x \to {\rm{\;}} + \infty } f(x) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to {\rm{\;}} - \infty } f(x) = {y_0}\).

      Lời giải chi tiết :

      Ta có \(\mathop {\lim }\limits_{x \to + \infty } \frac{{x - 3}}{{2 - x}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{1 - \frac{3}{x}}}{{\frac{2}{x} - 1}} = \frac{1}{{ - 1}} = - 1\) nên đồ thị hàm số f(x) có tiệm cận ngang là \(y = - 1\).

      Câu 5 :

      Cho hàm số \(f(x) = x + 1 + \frac{3}{{x - 6}}\). Tiệm cận xiên của đồ thị đã cho là đường thẳng

      • A.

        y = x – 5

      • B.

        y = x – 1

      • C.

        y = x + 1

      • D.

        y = x + 6

      Đáp án : C

      Phương pháp giải :

      Đường thẳng y = ax + b là tiệm cận xiên của đồ thị hàm số f(x) nếu \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f(x) - (ax + b)} \right] = 0\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } \left[ {f(x) - (ax + b)} \right] = 0\).

      Lời giải chi tiết :

      Ta có \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f(x) - (x + 1)} \right] = \mathop {\lim }\limits_{x \to + \infty } \left[ {x + 1 + \frac{3}{{x - 6}} - (x + 1)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{3}{{x - 6}} = 0\).

      Vây y = x + 1 là tiệm cận xiên của đồ thị hàm số.

      Câu 6 :

      Cho hàm số f(x) có đồ thị y = f’(x) như hình.

      Đề thi học kì 1 Toán 12 Cánh diều - Đề số 3 1 4

      Hàm số f(x) có điểm cực đại là

      • A.

        x = -1

      • B.

        x = 1

      • C.

        x = 0

      • D.

        Đáp án khác

      Đáp án : B

      Phương pháp giải :

      Hàm số f(x) đạt cực đại tại \({x_0}\) khi \(f'({x_0}) = 0\) và f’(x) đổi dấu từ dương sang âm khi qua

      \({x_0}\).

      Lời giải chi tiết :

      Quan sát đồ thị y = f’(x) ta thấy f’(x) > 0 trên (-1;1) và f’(x) < 0 trên (1;4) nên x = 1 là điểm cực đại của hàm số f(x).

      Câu 7 :

      Cho hình hộp ABCD.EFGH. Kết quả phép toán \(\overrightarrow {AB} + \overrightarrow {EH} \) là

      Đề thi học kì 1 Toán 12 Cánh diều - Đề số 3 1 5

      • A.

        \(\overrightarrow {CA} \)

      • B.

        \(\overrightarrow {EG} \)

      • C.

        \(\overrightarrow {FH} \)

      • D.

        \(\overrightarrow {AD} \)

      Đáp án : B

      Phương pháp giải :

      Dựa vào khái niệm vecto bằng nhau, vecto đối nhau, quy tắc ba điểm.

      Lời giải chi tiết :

      Ta có \(\overrightarrow {AB} + \overrightarrow {EH} = \overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} = \overrightarrow {EG} \).

      Câu 8 :

      Trong không gian cho tam giác ABC có trọng tâm G và điểm M nằm ngoài mặt phẳng (ABC). Khẳng định nào sau đây đúng?

      • A.

        \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow 0 \)

      • B.

        \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = 0\)

      • C.

        \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow {MG} \)

      • D.

        \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = 3\overrightarrow {MG} \)

      Đáp án : D

      Phương pháp giải :

      Sử dụng tính chất trọng tâm tam giác.

      Lời giải chi tiết :

      Vì G là trọng tâm tam giác ABC nên \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} = 3\overrightarrow {MG} \).

      Câu 9 :

      Trong không gian với hệ tọa độ Oxyz, cho điểm A(2;-1;0) và B(0;3;2). Tọa độ của vecto \(\overrightarrow {AB} \) là

      • A.

        (-2;4;-2)

      • B.

        (2;-4;-2)

      • C.

        (-2;4;2)

      • D.

        (-1;2;1)

      Đáp án : C

      Phương pháp giải :

      \(\overrightarrow {AB} = ({x_B} - {x_A};{y_B} - {y_A};{z_B} - {z_A})\).

      Lời giải chi tiết :

      \(\overrightarrow {AB} = (0 - 2;3 + 1;2 - 0) = ( - 2;4;2)\).

      Câu 10 :

      Trong không gian với hệ trục tọa độ Oxyz, cho hai vecto \(\overrightarrow u = (4;2;1)\) và \(\overrightarrow v = (1;2;1)\). Tính tích vô hướng \(\overrightarrow u .\overrightarrow v \).

      • A.

        \(\overrightarrow u .\overrightarrow v = 8\)

      • B.

        \(\overrightarrow u .\overrightarrow v = 6\)

      • C.

        \(\overrightarrow u .\overrightarrow v = 0\)

      • D.

        \(\overrightarrow u .\overrightarrow v = 9\)

      Đáp án : D

      Phương pháp giải :

      Sử dụng công thức tính tích vô hướng \(\overrightarrow a .\overrightarrow b = {x_a}.{x_b} + {y_a}.{y_b} + {z_a}.{z_b}\).

      Lời giải chi tiết :

      Ta có: \(\overrightarrow u .\overrightarrow v = 4.1 + 2.2 + 1.1 = 9\).

      Câu 11 :

      Trong không gian Oxyz, cho điểm M(1;-2;3). Điểm M’ đối xứng với M qua trục Oy có tọa độ

      • A.

        (1;2;3)

      • B.

        (-1;2;-3)

      • C.

        (-1;-2;-3)

      • D.

        (1;-2;-3)

      Đáp án : C

      Phương pháp giải :

      Điểm M’ đối xứng với M(a;b;c) qua trục Oy có tọa độ M’(-a;b;-c).

      Lời giải chi tiết :

      Điểm M’ đối xứng với M(1;-2;3) qua trục Oy có tọa độ M’(-1;-2;-3).

      Câu 12 :

      Thống kê chỉ số chất lượng không khí (AQI) tại một địa điểm vào các ngày trong tháng 6/2022 được cho trong bảng sau:

      Đề thi học kì 1 Toán 12 Cánh diều - Đề số 3 1 6

      Khoảng biến thiên của mẫu số liệu ghép nhóm trên là

      • A.

        50

      • B.

        250

      • C.

        150

      • D.

        8

      Đáp án : B

      Phương pháp giải :

      Khoảng biến thiên của mẫu số liệu ghép nhóm là hiệu số giữa đầu mút phải của nhóm cuối cùng và đầu mút trái của nhóm đầu tiên chứa dữ liệu.

      Lời giải chi tiết :

      R = 250 – 0 = 250.

      Phần II: Câu trắc nghiệm đúng sai.
      Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
      Câu 1 :

      Cho hàm số \(y = \frac{{ - {x^2} - 3x + 4}}{{x - 3}}\) có đồ thị là (C).

      a) Đồ thị (C) có tiệm cận xiên là y = –x – 6.

      Đúng
      Sai

      b) Đồ thị (C) nhận điểm I(3;-9) làm tâm đối xứng.

      Đúng
      Sai

      c) Đồ thị (C) có hai điểm cực trị nằm ở hai phía đối với Oy.

      Đúng
      Sai

      d) Đồ thị (C) không cắt trục Ox.

      Đúng
      Sai
      Đáp án

      a) Đồ thị (C) có tiệm cận xiên là y = –x – 6.

      Đúng
      Sai

      b) Đồ thị (C) nhận điểm I(3;-9) làm tâm đối xứng.

      Đúng
      Sai

      c) Đồ thị (C) có hai điểm cực trị nằm ở hai phía đối với Oy.

      Đúng
      Sai

      d) Đồ thị (C) không cắt trục Ox.

      Đúng
      Sai
      Phương pháp giải :

      Lập bảng biến thiên và nhận xét.

      Lời giải chi tiết :

      a) Đúng. \(f(x) = \frac{{ - {x^2} - 3x + 4}}{{x - 3}} = - x - 6 - \frac{{14}}{{x - 3}}\).

      Ta có \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f(x) - ( - x - 6)} \right] = \mathop {\lim }\limits_{x \to + \infty } \left[ { - x - 6 - \frac{{14}}{{x - 3}} - ( - x - 6)} \right] = \mathop {\lim }\limits_{x \to + \infty } \left( { - \frac{{14}}{{x - 3}}} \right) = 0\).

      Vậy đồ thị f(x) có tiệm cận xiên là y = –x – 6.

      b) Đúng. Đồ thị có tiệm cận đứng x = 3 và tiệm cận xiên y = –x – 6.

      Tâm đối xứng của đồ thị là giao của hai đường thẳng x = 3 và y = –x – 6.

      Với x = 3 ta có y = –3 – 6 = –9.

      Vậy tâm đối xứng là I(3;-9).

      c) Đúng. Tập xác định: D = R\{3}.

      Ta có \(f'(x) = \left( {\frac{{ - {x^2} - 3x + 4}}{{x - 3}}} \right)' = \frac{{( - 2x - 3)(x - 3) - ( - {x^2} - 3x + 4)}}{{{{(x - 3)}^2}}}\)

      \( = \frac{{ - 2{x^2} + 3x + 9 + {x^2} + 3x - 4}}{{{{(x - 3)}^2}}} = \frac{{ - {x^2} + 6x + 5}}{{{{(x - 3)}^2}}}\).

      \(f'(x) = 0 \Leftrightarrow x = 3 \pm \sqrt {14} \).

      Bảng biến thiên:

      Hai cực trị là \(x = 3 - \sqrt {14} \) và \(x = 3 + \sqrt {14} \) trái dấu nên chúng nằm ở hai phía đối với Oy.

      d) Sai. Đồ thị cắt trục Ox tại điểm có tung độ y = 0 suy ra hoành độ các giao điểm đó là nghiệm của phương trình \( - {x^2} - 3x + 4 = 0\). Phương trình có hai nghiệm x = 1 và x = -4 nên đồ thị cắt trục Ox tại hai điểm.

      Câu 2 :

      Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Biết AB = a, AD = 2a, SA = 2a và vuông góc với mặt đáy. Gọi M. N lần lượt là trung điểm của các cạnh SB, SD.

      a) Hai vecto \(\overrightarrow {AB} \), \(\overrightarrow {CD} \) là hai vecto cùng phương, cùng hướng.

      Đúng
      Sai

      b) Góc giữa hai vecto \(\overrightarrow {SC} \) và \(\overrightarrow {AC} \) bằng \({60^o}\).

      Đúng
      Sai

      c) Tích vô hướng \(\overrightarrow {AM} .\overrightarrow {AB} = \frac{{{a^2}}}{2}\).

      Đúng
      Sai

      d) Độ dài của vecto \(\overrightarrow {AM} - \overrightarrow {AN} \) bằng \(\frac{{a\sqrt 3 }}{2}\).

      Đúng
      Sai
      Đáp án

      a) Hai vecto \(\overrightarrow {AB} \), \(\overrightarrow {CD} \) là hai vecto cùng phương, cùng hướng.

      Đúng
      Sai

      b) Góc giữa hai vecto \(\overrightarrow {SC} \) và \(\overrightarrow {AC} \) bằng \({60^o}\).

      Đúng
      Sai

      c) Tích vô hướng \(\overrightarrow {AM} .\overrightarrow {AB} = \frac{{{a^2}}}{2}\).

      Đúng
      Sai

      d) Độ dài của vecto \(\overrightarrow {AM} - \overrightarrow {AN} \) bằng \(\frac{{a\sqrt 3 }}{2}\).

      Đúng
      Sai
      Phương pháp giải :

      Dựa vào khái niệm vecto cùng phương, cùng hướng, cách tính độ dài vecto, tích vô hướng của hai vecto và góc giữa hai vecto.

      Lời giải chi tiết :

      Đề thi học kì 1 Toán 12 Cánh diều - Đề số 3 1 7

      a) Sai. Vì ABCD là hình chữ nhật nên AB//CD.

      Khi đó \(\overrightarrow {AB} \), \(\overrightarrow {CD} \) là hai vecto cùng phương, ngược hướng.

      b) Sai. Ta có ABCD là hình chữ nhật nên \(AC = \sqrt {A{B^2} + A{D^2}} = \sqrt {{a^2} + {{\left( {2a} \right)}^2}} = a\sqrt 5 \).

      Vì SA vuông góc với đáy (ABCD) nên SA vuông góc với AC. Xét tam giác SAC vuông tại A:

      \(\tan \widehat {SCA} = \frac{{SA}}{{AC}} = \frac{{2a}}{{a\sqrt 5 }}\) suy ra \(\widehat {SCA} \approx {41^o}48'\).

      Ta có \(\left( {\overrightarrow {SC} ,\overrightarrow {AC} } \right) = \left( {\overrightarrow {CS} ,\overrightarrow {CA} } \right) = \widehat {SCA} \approx {41^o}48'\).

      c) Đúng. Vì SA vuông góc với đáy (ABCD) nên SA vuông góc với AB. Xét tam giác SAB vuông tại A:

      \(SB = \sqrt {S{A^2} + A{B^2}} = \sqrt {{{\left( {2a} \right)}^2} + {a^2}} = a\sqrt 5 \).

      Trong tam giác SAB vuông tại A có AM là đường trung tuyến nên \(AM = SM = MB = \frac{1}{2}SB = \frac{{a\sqrt 5 }}{2}\).

      Sử dụng định lý cosin cho tam giác MAB:

      \(\cos \widehat {MAB} = \frac{{M{A^2} + A{B^2} - M{B^2}}}{{2MA.MB}} = \frac{{{{\left( {\frac{{a\sqrt 5 }}{2}} \right)}^2} + {a^2} - {{\left( {\frac{{a\sqrt 5 }}{2}} \right)}^2}}}{{2.\frac{{a\sqrt 5 }}{2}.a}} = \frac{{\sqrt 5 }}{5}\).

      Ta có \(\overrightarrow {AM} .\overrightarrow {AB} = AM.AB\cos \left( {\overrightarrow {AM} ,\overrightarrow {AB} } \right) = \frac{{a\sqrt 5 }}{2}.a.\frac{{\sqrt 5 }}{5} = \frac{{{a^2}}}{2}\).

      d) Sai. Vì M, N lần lượt là trung điểm của SA, SD nên MN là đường trung bình của tam giác SBD.

      Do đó \(MN = \frac{1}{2}BD = \frac{1}{2}AC = \frac{{a\sqrt 5 }}{2}\).

      Vậy \(\left| {\overrightarrow {AM} - \overrightarrow {AN} } \right| = \left| {\overrightarrow {NM} } \right| = MN = \frac{{a\sqrt 5 }}{2}\).

      Câu 3 :

      Câu 3. Trong không gian Oxyz, cho hai điểm M(-4;3;-1) và N(2;-1;-3).

      a) \(\overrightarrow {OM} = ( - 4;3; - 1)\).

      b) Cho vecto \(\overrightarrow v = \overrightarrow i + 2\overrightarrow j - 3\overrightarrow k \) và \(\overrightarrow {AM} = \overrightarrow v \). Tọa độ điểm A là (-5;1;2).

      c) Gọi G là trọng tâm tam giác OMN. Tọa độ hình chiếu của G trên Oxy là \(\left( {0;0; - \frac{4}{3}} \right)\).

      d) Gọi I là trung điểm đoạn MN. Tọa độ vecto \(\overrightarrow w = 3\overrightarrow i + 2\overrightarrow {ON} - \frac{1}{2}\overrightarrow {OI} \) là \(\left( {\frac{9}{2};\frac{{ - 5}}{2}; - 7} \right)\).

      a) \(\overrightarrow {OM} = ( - 4;3; - 1)\).

      Đúng
      Sai

      b) Cho vecto \(\overrightarrow v = \overrightarrow i + 2\overrightarrow j - 3\overrightarrow k \) và \(\overrightarrow {AM} = \overrightarrow v \). Tọa độ điểm A là (-5;1;2).

      Đúng
      Sai

      c) Gọi G là trọng tâm tam giác OMN. Tọa độ hình chiếu của G trên Oxy là \(\left( {0;0; - \frac{4}{3}} \right)\).

      Đúng
      Sai

      d) Gọi I là trung điểm đoạn MN. Tọa độ vecto \(\overrightarrow w = 3\overrightarrow i + 2\overrightarrow {ON} - \frac{1}{2}\overrightarrow {OI} \) là \(\left( {\frac{9}{2};\frac{{ - 5}}{2}; - 7} \right)\).

      Đúng
      Sai
      Đáp án

      a) \(\overrightarrow {OM} = ( - 4;3; - 1)\).

      Đúng
      Sai

      b) Cho vecto \(\overrightarrow v = \overrightarrow i + 2\overrightarrow j - 3\overrightarrow k \) và \(\overrightarrow {AM} = \overrightarrow v \). Tọa độ điểm A là (-5;1;2).

      Đúng
      Sai

      c) Gọi G là trọng tâm tam giác OMN. Tọa độ hình chiếu của G trên Oxy là \(\left( {0;0; - \frac{4}{3}} \right)\).

      Đúng
      Sai

      d) Gọi I là trung điểm đoạn MN. Tọa độ vecto \(\overrightarrow w = 3\overrightarrow i + 2\overrightarrow {ON} - \frac{1}{2}\overrightarrow {OI} \) là \(\left( {\frac{9}{2};\frac{{ - 5}}{2}; - 7} \right)\).

      Đúng
      Sai
      Phương pháp giải :

      Sử dụng các quy tắc cộng, trừ vecto, nhân vecto với một số.

      Lời giải chi tiết :

      a) Đúng. Tọa độ \(\overrightarrow {OM} \) là tọa độ điểm M(-4;3;-1).

      b) Đúng. \(\overrightarrow v = \overrightarrow i + 2\overrightarrow j - 3\overrightarrow k = (1;2; - 3)\).

      \(\overrightarrow {AM} = \overrightarrow v \Leftrightarrow \left\{ \begin{array}{l} - 4 - {x_A} = 1\\3 - {y_A} = 2\\ - 1 - {z_A} = - 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_A} = - 5\\{y_A} = 1\\{z_A} = 2\end{array} \right.\), vậy A(-5;1;2).

      c) Sai. Ta có: \(\left\{ \begin{array}{l}{x_G} = \frac{{{x_O} + {x_M} + {x_N}}}{3} = \frac{{0 - 4 + 2}}{3} = - \frac{2}{3}\\{y_G} = \frac{{{y_O} + {y_M} + {y_N}}}{3} = \frac{{0 + 3 - 1}}{3} = \frac{2}{3}\\{z_G} = \frac{{{z_O} + {z_M} + {z_N}}}{3} = \frac{{0 - 1 - 3}}{3} = \frac{{ - 4}}{3}\end{array} \right.\), vậy G\(\left( { - \frac{2}{3};\frac{2}{3}; - \frac{4}{3}} \right)\).

      Tọa độ hình chiếu của G trên Oxy là \(\left( { - \frac{2}{3};\frac{2}{3};0} \right)\).

      d) Sai. Ta có \(\left\{ \begin{array}{l}{x_I} = \frac{{{x_M} + {x_N}}}{2} = \frac{{ - 4 + 2}}{2} = - 1\\{y_I} = \frac{{{y_M} + {y_N}}}{2} = \frac{{3 - 1}}{2} = 1\\{z_I} = \frac{{{z_M} + {z_N}}}{2} = \frac{{ - 1 - 3}}{2} = - 2\end{array} \right.\), vậy I(-1;1;-2).

      Câu 4 :

      Bảng dưới đây cho ta bảng tần số ghép nhóm số liệu thống kê cân nặng của 40 học sinh lớp 12B trong một trường trung học phổ thông (đơn vị: kg).

      Đề thi học kì 1 Toán 12 Cánh diều - Đề số 3 1 8

      a) Số học sinh nặng dưới 50 kg là 12.

      Đúng
      Sai

      b) Cân nặng trung bình của 40 học sinh là 55 kg.

      Đúng
      Sai

      c) Phương sai của mẫu số liệu trên bằng 129.

      Đúng
      Sai

      d) Độ lệch chuẩn của mẫu số liệu trên (làm tròn đến hàng phần mười) là 11,3.

      Đúng
      Sai
      Đáp án

      a) Số học sinh nặng dưới 50 kg là 12.

      Đúng
      Sai

      b) Cân nặng trung bình của 40 học sinh là 55 kg.

      Đúng
      Sai

      c) Phương sai của mẫu số liệu trên bằng 129.

      Đúng
      Sai

      d) Độ lệch chuẩn của mẫu số liệu trên (làm tròn đến hàng phần mười) là 11,3.

      Đúng
      Sai
      Phương pháp giải :

      a) Số học sinh nặng dưới 50 kg là tổng tần số hai nhóm [30;40) và [40;50).

      b) Số trung bình: \(\bar x{\rm{\;}} = \frac{{{m_1}{x_1} + ... + {m_k}{x_k}}}{n}\).

      c) Phương sai: \({s^2} = \frac{{m{{({x_1} - \bar x)}^2} + ... + {m_k}{{({x_k} - \bar x)}^2}}}{n}\).

      d) Độ lệch chuẩn: \(s = \sqrt {{s^2}} \).

      Lời giải chi tiết :

      a) Đúng. Số học sinh nặng dưới 50 kg là 2 + 10 = 12 (kg).

      b) Sai. Cân nặng trung bình của 40 học sinh là:

      \(\overline x = \frac{{35.2 + 45.10 + 55.16 + 65.8 + 75.2 + 85.2}}{{40}} = 56\) (kg).

      c) Đúng. Phương sai của mẫu số liệu trên là:

      \({s^2} = \frac{\begin{array}{l}2.{(35 - 56)^2} + 10.{(45 - 56)^2} + 16.{(55 - 56)^2}\\ + 8.{(65 - 56)^2} + 2.{(75 - 56)^2} + 2.{(85 - 56)^2}\end{array}}{{40}} = 129\).

      d) Sai. Độ lệch chuẩn của mẫu số liệu trên là \(s = \sqrt {129} \approx 11,4\).

      Phần III: Câu trắc nghiệm trả lời ngắn.
      Thí sinh trả lời từ câu 1 đến câu 6.
      Câu 1 :

      Giả sử số lượng của một quần thể nấm X tại môi trường nuôi cấy trong phòng thí nghiệm được mô hình hóa bằng hàm số \(P(t) = 120{e^{0,15t}}\), trong đó thời gian t được tính bằng giờ. Tại thời điểm ban đầu t = 0, tốc độ tăng trưởng của quần thể nấm X là bao nhiêu (đơn vị: tế bào/giờ)?

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      Tính P’(0).

      Lời giải chi tiết :

      Hàm tốc độ tăng trưởng của quần thể nấm là \(P'(t) = 120.0,15.{e^{0,15t}} = 18.{e^{0,15t}}\) (tế bào/giờ).

      Tốc độ tăng trưởng của quần thể nấm ở thời điểm t = 0 là \(P'(0) = 18.{e^{0,15.0}} = 18.{e^0} = 18\) (tế bào/giờ).

      Câu 2 :

      Một tập chí được bán với giá 20 nghìn đồng một cuốn. Chi phí xuất bản x cuốn tập chí (bao gồm: lương cán bộ, công nhân viên, giấy in, ...) được cho bởi công thức \(C(x) = 0,0001{x^2} - 0,2x + 10000\), C(x) được tính theo đơn vị vạn đồng. Chi phí phát hành cho mỗi cuốn là 4 nghìn đồng. Giả sử T(x) là tổng chi phí (xuất bản và phát hành) cho x cuốn tạp chí. Tỉ số \(M(x) = \frac{{T(x)}}{x}\) được gọi là chi phí trung bình cho một cuốn tạp chí khi xuất bản x cuốn. Tìm số lượng tạp chí cần xuất bản sao cho chi phí trung bình là thấp nhất.

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      Thiết lập hàm số \(M(x) = \frac{{T(x)}}{x}\) và tìm giá trị nhỏ nhất của M(x).

      Lời giải chi tiết :

      Tổng chi phí cho x cuốn tạp chí là \(T(x) = C(x) + 0,4x = 0,0001{x^2} + 0,2x + 10000\).

      Ta có \(M(x) = \frac{{T(x)}}{x} = \frac{{0,0001{x^2} + 0,2x + 10000}}{x} = 0,0001x + \frac{{10000}}{x} + 0,2\), với \(x \in {\mathbb{N}^*}\).

      \(M'(x) = 0,0001 - \frac{{10000}}{{{x^2}}} = 0 \Leftrightarrow x = 10000\).

      Bảng biến thiên:

      Đề thi học kì 1 Toán 12 Cánh diều - Đề số 3 1 9

      Từ bảng biến thiên, ta thấy chi phí trung bình cho x cuốn tạp chí thấp nhất khi x = 10000 (cuốn).

      Câu 3 :

      Cho hàm số \(y = \frac{{ax + b}}{{cx + 1}}\) \((a,b,c \in \mathbb{R})\) có bảng biến thiên như sau:

      Đề thi học kì 1 Toán 12 Cánh diều - Đề số 3 1 10

      Có bao nhiêu giá trị nguyên b có thể nhận trong khoảng (-5;5)?

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      Tìm điều kiện của b dựa vào các đường tiệm cận của đồ thị và sự biến thiên của hàm số.

      Lời giải chi tiết :

      Đồ thị hàm số \(y = \frac{{ax + b}}{{cx + 1}}\) có tiệm cận đứng là đường thẳng \(x = - \frac{1}{c}\) và tiệm cận ngang là đường thẳng \(y = \frac{a}{c}\).

      Dựa vào bảng biến thiên, ta thấy \( - \frac{1}{c} = - 1 \Leftrightarrow c = 1\) và \(\frac{a}{c} = 2 \Leftrightarrow \frac{a}{1} = 2 \Leftrightarrow a = 2\).

      Ta có \(y' = \frac{{a - bc}}{{{{(cx + 1)}^2}}} = \frac{{2 - b}}{{{{(x + 1)}^2}}}\).

      Vì hàm số đồng biến trên\(( - \infty ; - 1)\) và \(( - 1; + \infty )\) nên \(y' = \frac{{2 - b}}{{{{(x + 1)}^2}}} > 0 \Leftrightarrow 2 - b > 0 \Leftrightarrow b < 2\).

      Các giá trị nguyên b thỏa mãn trên (-5;5) là -5; -4; …; -1; 0 ; 1.

      Vậy có 7 giá trị nguyên b có thể nhận được.

      Câu 4 :

      Cho tứ diện đều ABCD có cạnh bằng 15. Biết độ dài \(\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} \) bằng \(a\sqrt 6 \). Khi đó, giá trị của a bằng bao nhiêu?

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      Sử dụng tính chất của trung điểm, trọng tâm, tích của một số với một vecto.

      Lời giải chi tiết :

      Đề thi học kì 1 Toán 12 Cánh diều - Đề số 3 1 11

      Gọi G là trọng tâm tam giác BCD, M là trung điểm của CD.

      Khi đó: \(\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} = 3\overrightarrow {AG} \). Suy ra \(\left| {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right| = \left| {3\overrightarrow {AG} } \right| = 3AG\).

      Xét tam giác đều BCD có \(BM = \frac{{\sqrt 3 }}{2}BC = \frac{{\sqrt 3 }}{2}.15\).

      G là trọng tâm tam giác BCD nên \(BG = \frac{2}{3}BM = \frac{2}{3}.\frac{{15\sqrt 3 }}{2} = 5\sqrt 3 \).

      Vì tứ diện ABCD đều nên AG vuông góc với mặt phẳng (BCD). Do đó \(\widehat {AGB} = {90^o}\).

      Xét tam giác ABG vuông tại G: \(AG = \sqrt {A{B^2} - B{G^2}} = \sqrt {{{15}^2} - {{\left( {5\sqrt 3 } \right)}^2}} = 5\sqrt 6 \).

      Khi đó \(\left| {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right| = 3AG = 3.5\sqrt 6 = 15\sqrt 6 \).

      Vậy a = 15.

      Câu 5 :

      Một căn phòng dạng hình hộp chữ nhật với chiều dài 8m, rộng 6m và cao 4m có hai chiếc quạt treo tường. Chiếc quạt A treo chính giữa bức tường 8m và cách trần 1m, chiếc quạt B treo chính giữa bức tường 6m và cách trần 1,5m. Hỏi khoảng cách giữa hai chiếc quạt AB cách nhau bao nhiêu m (làm tròn đến hàng phần nghìn)?

      Đề thi học kì 1 Toán 12 Cánh diều - Đề số 3 1 12

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      Tìm tọa độ hai chiếc quạt dựa vào hệ trục đó rồi tính khoảng cách.

      Công thức tính khoảng cách: \(AB = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2} + {{\left( {{z_B} - {z_A}} \right)}^2}} \).

      Lời giải chi tiết :

      Ta có A(4;0;3) và điểm \(B\left( {0;3;\frac{5}{2}} \right)\).

      Khoảng cách giữa hai chiếc quạt là:

      \(AB = \sqrt {{{(0 - 4)}^2} + {{(3 - 0)}^2} + {{\left( {\frac{5}{2} - 3} \right)}^2}} = \frac{{\sqrt {101} }}{2} \approx 5,025\) (m).

      Câu 6 :

      Bảng sau thống kê cân nặng của 50 quả xoài Thanh Ca được lựa chọn ngẫu nhiên sau khi thu hoạch ở một nông trường.

      Đề thi học kì 1 Toán 12 Cánh diều - Đề số 3 1 13

      Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho (làm tròn kết quả đến chữ số thập phân thứ hai).

      Đáp án:

      Đáp án

      Đáp án:

      Phương pháp giải :

      Công thức: \({\Delta _Q} = {Q_3} - {Q_1}\).

      Lời giải chi tiết :

      Cỡ mẫu: n = 3 + 13 + 18 + 11 + 5 = 50.

      Gọi \({x_1},{x_2},...,{x_{50}}\) là mẫu số liệu gốc được sắp xếp theo thứ tự không giảm.

      Tứ phân vị thứ nhất của mẫu số liệu gốc là \({x_{13}} \in [290;330)\).

      \({Q_1} = 290 + \frac{{\frac{{50}}{4} - 3}}{{13}}(330 - 290) = \frac{{4150}}{{13}}\).

      Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{38}} \in [370;410)\).

      \({Q_3} = 370 + \frac{{\frac{{3.50}}{4} - (3 + 13 + 18)}}{{11}}(410 - 370) = \frac{{4210}}{{11}}\).

      Vậy \({\Delta _Q} = {Q_3} - {Q_1} = \frac{{4210}}{{11}} - \frac{{4150}}{{13}} = \frac{{9080}}{{143}} \approx 63,5\).

      Đề thi học kì 1 Toán 12 Cánh diều - Đề số 3: Tổng quan và Hướng dẫn Ôn tập

      Kỳ thi học kì 1 Toán 12 đóng vai trò quan trọng trong việc đánh giá quá trình học tập của học sinh trong nửa học kỳ đầu tiên. Việc chuẩn bị kỹ lưỡng với các đề thi thử, đặc biệt là các đề thi được biên soạn theo chương trình Cánh diều, là vô cùng cần thiết. Bài viết này sẽ cung cấp thông tin chi tiết về Đề thi học kì 1 Toán 12 Cánh diều - Đề số 3, phân tích cấu trúc đề thi, các dạng bài tập thường gặp và gợi ý phương pháp ôn tập hiệu quả.

      Cấu trúc Đề thi học kì 1 Toán 12 Cánh diều - Đề số 3

      Đề thi học kì 1 Toán 12 Cánh diều - Đề số 3 thường bao gồm các phần sau:

      • Phần trắc nghiệm: Khoảng 20-30% tổng số điểm, tập trung vào các kiến thức cơ bản, định nghĩa, công thức và kỹ năng tính toán nhanh.
      • Phần tự luận: Khoảng 70-80% tổng số điểm, bao gồm các dạng bài tập vận dụng kiến thức vào giải quyết các bài toán thực tế, chứng minh các định lý và bất đẳng thức.

      Các Dạng Bài Tập Thường Gặp

      Trong đề thi học kì 1 Toán 12 Cánh diều - Đề số 3, các em học sinh có thể gặp các dạng bài tập sau:

      1. Hàm số: Xét tính đơn điệu, cực trị, giá trị lớn nhất, giá trị nhỏ nhất của hàm số.
      2. Đạo hàm: Tính đạo hàm, ứng dụng đạo hàm để giải các bài toán về cực trị, khoảng đơn điệu.
      3. Giới hạn: Tính giới hạn của hàm số, giới hạn vô cùng.
      4. Số phức: Các phép toán trên số phức, phương trình bậc hai với hệ số thực.
      5. Hình học: Đường thẳng và mặt phẳng trong không gian, quan hệ vuông góc, khoảng cách.

      Hướng dẫn Ôn tập Hiệu quả

      Để đạt kết quả tốt nhất trong kỳ thi học kì 1 Toán 12, các em học sinh nên:

      • Nắm vững kiến thức cơ bản: Đọc kỹ sách giáo khoa, ghi chép đầy đủ các công thức, định lý và ví dụ minh họa.
      • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau, từ dễ đến khó, để rèn luyện kỹ năng và tư duy.
      • Sử dụng các tài liệu ôn tập: Tham khảo các đề thi thử, sách bài tập, video bài giảng để bổ sung kiến thức và kỹ năng.
      • Tìm kiếm sự giúp đỡ: Hỏi thầy cô giáo, bạn bè hoặc gia sư khi gặp khó khăn.
      • Lập kế hoạch ôn tập: Chia nhỏ nội dung ôn tập thành các phần nhỏ hơn, phân bổ thời gian hợp lý và thực hiện theo kế hoạch.

      Tải Đề thi học kì 1 Toán 12 Cánh diều - Đề số 3 tại tusach.vn

      Tusach.vn cung cấp Đề thi học kì 1 Toán 12 Cánh diều - Đề số 3 với đáp án chi tiết, giúp các em học sinh tự đánh giá năng lực và chuẩn bị tốt nhất cho kỳ thi. Hãy truy cập tusach.vn để tải đề thi ngay hôm nay!

      Bảng so sánh các đề thi học kì 1 Toán 12 Cánh diều

      Đề sốĐộ khóThời gian làm bàiĐáp án
      Đề số 1Trung bình90 phút
      Đề số 2Khó90 phút
      Đề số 3Trung bình - Khó90 phút

      Chúc các em học sinh ôn tập tốt và đạt kết quả cao trong kỳ thi học kì 1 Toán 12!

      Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

      VỀ TUSACH.VN